• Title/Summary/Keyword: molding Analysis

Search Result 886, Processing Time 0.027 seconds

A Study on Compressor Seal for Automotive Air-conditioner using Polymer Resin (고분자 수지를 이용한 자동차 에어컨용 압축기의 씰에 관한 연구)

  • 정태형;하영욱
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.22-27
    • /
    • 2002
  • The existing compressor steel seal used in automotive air-conditioner has the problem of oil leakage and the deterioration in shielding performance, due to the abrasion and the corrosion of the material. A new type of polymer resin seal is studied in the research. The polymer resin seal has the characteristics of high anti-abrasiveness and anti-corrosiveness, which can overcome the deflects of the steel seal. In addition, the seal needs lower manufacturing cost and is appropriate to mass production, because it is made by the injection molding method requiring no mechanical processing. The profile generation program for seal mold has been developed using the gradient method, and the molding characteristics of the seal have analyzed through the flow analysis and the warpage analysis. The program has been verified by comparing the analysis results with the measured data of the test product. The research might be said to provide the basic method to produce the polymer resin seals with various types and dimensions.

  • PDF

Analysis of Forming Processes of PET Bottle using a finite Element Method (유한요소법을 이용한 PET병의 성형 공정 해석)

  • 주성택;김용환;류민영
    • Transactions of Materials Processing
    • /
    • v.10 no.7
    • /
    • pp.525-533
    • /
    • 2001
  • PET bottles are main]y manufactured by the stretch blow-molding process. In order to improve the thickness distribution to avoid crack generation at bottom region of one-piece PET bottle, process analysis of stretch blow-molding using a finite element method has been carried out. Finite element analysis has been carried out using ABAQUS/Standard. CREEP user subroutine provided in ABAQUS has been used to model PET behavior that is rate sensitive. Among the process parameters, the effect of plunger movement to thickness distribution of bottle has been considered by axisymmetric analysis. A modified process of plunger movement, which yields more uniform thickness distribution, has been proposed. 3D FE analysis has been done to confirm the validity of the proposed process.

  • PDF

A Study on Compressor Seal for Automotive Air-conditioner using Polymer Resin (고분자 수지를 이용한 자동차 에어컨용 압축기의 씰에 관한 연구)

  • 정태형;하영욱
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.5
    • /
    • pp.81-87
    • /
    • 2002
  • The existing compressor steel seal used in automotive air-conditioner has the problem of oil leakage and deterioration in shielding performance, due to the abrasion and corrosion of the material. A new type of polymer resin seal studied in this research has the characteristics of high anti-abrasiveness and anti-corrosiveness, which can oversome the defects of the steel seal. In addition, the seal needs lower manufacturing cost and is appropriate to mass production, because it is made by the injection molding method requiring no mechanical processing. The profile generation program for seal mold has been developed using the gradient method, and the molding characteristics of the seal have analyzed through the flow analysis and the warpage analysis. The program has been verified by comparing the analysis results with the measured data of the test product. The research might be said to provide the basic method to produce the polymer resin seals with various types and dimensions.

Flow Simulation and Deformation Analysis for Injection Molded Plastic Lenses using Solid Elements (입체요소를 사용한 플라스틱 렌즈의 사출성형 및 후변형 해석)

  • Park, Geun;Han, Chul-Yup
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.784-787
    • /
    • 2003
  • The present work covers three-dimensional flow simulation and deformation analysis of injection molded plastic lenses using solid elements. A numerical scheme to evaluate part deformation has been proposed from the results of injection molding analysis. Proposed scheme has been applied to the injection molding processes of optical plastic lenses: a spherical lens and an aspheric lens for a photo pick-up device. Through the simulation processes. residual stress is estimated and the final deformed patters are obtained for both products. The reliability of the proposed approach has also been verified in comparison with the results of real experiments.

  • PDF

An analysis of Injection Molding Process for the Manufacturing of DC Motor Case (DC 모터 케이스 제조를 위한 사출성형공정 분석)

  • 민병현;김병곤
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.812-815
    • /
    • 2000
  • Injection molding process was taken to manufacture DC motor case that surrounds DC motor used as automobile parts. Up to now, DC motor case has been made by the deep drawing process or bending process of metal materials. Simulations of filling, packing and cooling processes were done by CAE tool like Moldflow software. Optimal delivery system was decided from the analysis of flow balance, and packing and cooling analyses were performed by using the design of experiment to minimize the volumetric shrinkage of molded part and the temperature difference between mold and part.

  • PDF

Injection Molding and Structure Analysis of Inline Skate Frames Using FEA (유한요소해석을 이용한 인라인스케이트 프레임의 사출성형해석 및 구조해석에 관한 연구)

  • Park, Chul-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1507-1514
    • /
    • 2011
  • Injection molding is the most commonly used process that uses plastic material. Today, the uses of plastic material are continuously increasing, and the range of application is also being extended by the development of novel materials. An inline skate consists of 4 components: the boot, frame, wheel and brake. Among these components, the frame is the most critical. The injection formability for a variety of injection materials for inline skate frames was studied. We also studied the injection formability of the product for various sizes of the runner and gate. In this study, injection molding analysis was performed using MOLDFLOW, and structural analysis was performed using ANSYS.

Reduction of Birefringence and Weld-Line using Over-Flow in Injection Compression Molding for Optic Lens (광학렌즈의 사출압축성형에서 오버플로우를 이용한 웰드라인과 복굴절 저감)

  • Kong, Ki-Hwan;Lee, Jin-Hyo;Kang, Byung-Ook;Kwak, Tae-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.1
    • /
    • pp.95-100
    • /
    • 2018
  • This study has focused on the weld-line and birefringence reduction of a plastic optic lens using over and CAE analysis in injection compression molding. A concave lens, which has a thin thickness in the center and a large difference in thickness between the center and the periphery, often causes weld-line defects during injection molding. CAE analysis has been applied to optimize the overflow design in order to reduce the weld-line defects and the polarization defects. To reduce the weld line and birefringence defects, overflow design and application using CAE analysis show that the measured birefringence values of the specimens before the overflow application were 46.8nm and 36.9nm, and the values after the over-flow application were 13.6nm and 14.0nm. From the experimental results, it is confirmed that birefringence is greatly improved when overflow is applied.

Optimization of Gate Location Using Computer-Aided Injection Molding Analysis (사출성형 해석을 이용한 게이트 위치 최적화)

  • Moon, Jong-Sin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.10
    • /
    • pp.5968-5973
    • /
    • 2014
  • The gate location in injection molding has a significant influence on the quality and productivity. Therefore, injection molding CAE is used to determine the gate location. With increasing injection molding CAE and the adoption of a 3D mesh, which takes more computation time for analysis, gate location optimization in the shortest time and least resources is the most challenging issue. In this paper, we propose a methodology for optimization based on the flow length to consider the flow balance and weld line. In addition, the flow balance is obtained in the disc-type plate while the weld lines exit the slit-holes to avoid a stress concentration.

A Study on the Prediction of Warpage During the Compression Molding of Glass Fiber-polypropylene Composites (유리섬유-폴리프로필렌 복합재료의 압축 공정 중 뒤틀림 예측에 관한 연구)

  • Gyuhyeong Kim;Donghyuk Cho;Juwon Lee;Sangdeok Kim;Cheolmin Shin;Jeong Whan Yoon
    • Transactions of Materials Processing
    • /
    • v.32 no.6
    • /
    • pp.367-375
    • /
    • 2023
  • Composite materials, known for their excellent mechanical properties and lightweight characteristics, are applied in various engineering fields. Recently, efforts have been made to develop an automotive battery protection panel using a plain-woven composite composed of glass fiber and polypropylene to reduce the weight of automobiles. However, excessive warpage occurs during the GF/PP compression molding process, which makes car assembly challenging. This study aims to develop a model that predicts the warpage during the compression molding process. Obtaining out-of-plane properties such as elastic or shear modulus, essential for predicting warpages, is tricky. Existing mechanical methods also have limitations in calculating these properties for woven composite materials. To address this issue, finite element analysis is conducted using representative volume elements (RVE) for woven composite materials. A warpage prediction model is developed based on the estimated physical properties of GF/PP composite materials obtained through representative volume elements. This model is expected to be used for reducing warpages in the compression molding process.

Effects of Molding Pressure and Sintering Temperature on Properties of Foamed Glass without Blowing Agent

  • Kim, EunSeok;Kim, Kwangbae;Lee, Hyeryeong;Kim, Ikgyu;Song, Ohsung
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.2
    • /
    • pp.178-183
    • /
    • 2019
  • A process of fabricating the foamed glass that has closed pores with 8 ~ 580 ㎛ sizes without a blowing agent by sintering 10 ㎛ boron-free glass powder composed of CaO, MgO, SO3, Al2O3-83 wt% SiO2 at a molding pressure of 0 ~ 120 MPa and a sintering temperature of 750 ~ 1000℃ was investigated. To analyze the glass transition temperature of glass powder, thermogravimetric analysis-differential thermal analysis (TGA-DTA) method were used. The microstructure and pore size of foamed glass were examined using the optical microscopy and field emission scanning electron microscopy (FE-SEM). For the thermal diffusivity and color of the fabricated samples, a heat flow meter and ultraviolet-visible-near-infrared (UV-VIS-NIR)-colormetry were used, respectively. In the TGA-DTA result, the glass transition temperature of glass powder was confirmed to be 626℃. In the microstructure result, closed pores of 7 ~ 20 ㎛ were formed at 750 ~ 900℃, and they were not affected by the molding pressure and sintering temperature. However, at 1,000℃, when there was 0 MPa molding pressure, closed pores of 580 ㎛ were confirmed, and the pore size decreased as the molding pressure increased. Moreover, at a molding pressure of 30 MPa or higher, closed pores of approximately 400 ㎛ were formed. The porosity showed an increasing trend of smaller molding pressure and larger sintering temperature, and it was controllable in the range of 5.69 ~ 68.45%. In the thermal diffusivity result, there was no change according to the molding pressure, and, by increasing the sintering temperature, up to 0.115 W/m·K could be obtained. The Lab color index (CIE-Lab) results all showed a similar translucent white color regardless of molding pressure and sintering temperature. Therefore, based on the foamed glass without boron and blowing agent, it was confirmed that white foamed glass, which has closed pores of 8 ~ 580 ㎛ and a thermal diffusivity characteristic of 0.115 W/m·K, can be fabricated by changing the molding pressure and sintering temperature.