• Title/Summary/Keyword: mold-filling

Search Result 346, Processing Time 0.029 seconds

The Effects of the GAIM Process Variables on the Penetration-Length Variations in a Unary Branch Type Runner Mold (편측분기형 러너 금형에서 가스사출 성형변수가 성형품의 중공부 길이 변화에 미치는 영향)

  • Han Seong Ryul;Park Tae Won;Jeong Yeong Deug
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.1
    • /
    • pp.137-142
    • /
    • 2005
  • Gas-Assisted Injection Molding(GAIM) is an innovative technology for producing plastic parts and has been received extensive attention in the plastic manufacturing industries. But, due to gas-polymer interacting during the gas injection phase, the process has significantly different characteristics from conventional injection molding and, therefore, the control of the process requires much technical knowledge in processing and materials. The experiment was performed about variations of gas-penetration length that is affected by filling imbalance resulting from the structure of runner. The Taguchi method was used for the design of experiment. The most effective factors for the gas-penetration length were the shot size and mold temperature. The most effective factors for the difference of the gas-penetration length were the melt temperature and shot size. This study also discussed the filling imbalance phenomenon in a unary branch runner type mold that has geometrically balanced runner.

A Study on Moldability Evaluation System in Injection Molding Based on Fuzzy Neural Network (퍼지 신경망을 이용한 성형성 평가 시스템에 관한 연구)

  • 강성남;허용정;조현찬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.97-100
    • /
    • 1997
  • In order to predict the moldability of a injection molded part, a simulation of filling is needed. Especially when short shot is predicted by CAE simulation in the filling stage, there are mainly three ways to solve the problem. Modification of gate and runner, replacement of plastic resin, and adjustment of process conditions are the main ways. Among them, adjustment of process conditions is the most economic way in the cost and time since the mold doesn\\`t need t be modified at all. But it is difficult to adjust the process conditions appropriately in no times since it requires an empirical knowledge of injection molding. In this paper, a fuzzy neural network(FNN) based upon injection molding process is proposed to evaluate moldability in filling stage and also to solve the problem in case of short shot. An adequate mold temperature is generated through the fuzzy neural network where fill time and melt temperature are taken into considerations because process conditions affect each other.

  • PDF

Direct simulations on 2D mold-filling processes of particle-filled fluids

  • Hwang, Wook-Ryol;Kim, Worl-Yong;Kang, Shin-Hyun;Kim, See-Jo
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.3
    • /
    • pp.193-200
    • /
    • 2009
  • We present a direct simulation technique for two-dimensional mold-filling simulations of fluids filled with a large number of circular disk-like rigid particles. It is a direct simulation in that the hydrodynamic interaction between particles and fluid is fully considered. We employ a pseudo-concentration method for the evolution of the flow front and the DLM (distributed Lagrangian multipliers)-like fictitious domain method for the implicit treatment of the hydrodynamic interaction. Both methods allow the use of a fixed regular discretization during the entire computation. The discontinuous Galerkin method has been used to solve the concentration evolution equation and the rigid-ring description has been introduced for freely suspended particles. A buffer zone, the gate region of a finite area subject to the uniform velocity profile, has been introduced to put discrete particles into the computational domain avoiding any artificial discontinuity. From example problems of 450 particles, we investigated the particle motion and effects of particles on the flow for both Newtonian and shear-thinning fluid media. We report the prolonged particle movement toward the wall in case of a shear-thinning fluid, which has been interpreted with the shear rate distribution.

The Injection Molding Analysis and The Mold Design for Automotive Plastic Fender (승용차용 플라스틱 펜더의 사출성형해석과 금형설계)

  • 김헌영;김중재;김영주
    • Transactions of Materials Processing
    • /
    • v.6 no.6
    • /
    • pp.489-499
    • /
    • 1997
  • The injection molding process is analyzed to get the information on the mold design parameters and the optimum process conditions for automotive plastic front fender. The gate position, runner size and cooling channel are determined by the estimation of the flow balance, packing time, uniform cooling and shrinkage and warpage in the injection molding analyses. The procedure can be used in the mold design in the early stage when developing plastic parts.

  • PDF

Optimal Control of Injection Molding Process by Using temperature Sensor (캐비티 온도센서를 이용한 최적 사출공정 제어)

  • Park, Cheon-Soo;Kang, Chul-Min
    • Design & Manufacturing
    • /
    • v.2 no.5
    • /
    • pp.30-33
    • /
    • 2008
  • Injection Molding is the most effective process for mass production of plastic parts. The injection molding process is composed with several steps such as Filling, Packing, Holding, Cooling, Ejecting. Among them, filling and packing process should be considered carefully to improve accuracy of dimension, surface quality of plastic parts. Usually the quality above-mentioned is managed with weight of part after molding on the field. In this paper, a series of experiment for molding automotive front bumper was conducted with cavitity temperature sensor to optimize switch-over time(V-P switching), hot runner vale gate sequence time during filling and packing step for the purpose of uniform quality, weight at every molding. As a result, it was found that it is effective method to use temperature sensor in injection molding for quality control of plastic molding.

  • PDF

Effect of Boundary Slip Phenomena in Nanoimprint Lithography Process (나노임프린트 리소그래피 공정에서 Slip에 의한 경계 효과)

  • Lee, Young-Hoon;Kim, Nam-Woong;Sin, Hyo-Chol
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.2
    • /
    • pp.144-153
    • /
    • 2009
  • It is widely known that no-slip assumptions are often violated on regular basis in micrometer- or nanometer-scale fluid flow. In the case of cavity-filling process of nanoimprint lithography(NIL), slip phenomena take place naturally at the solid-to-liquid boundaries, that is, at the mold-to-polymer or polymer-to-substrate boundaries. If the slip or partial slip phenomena are promoted at the boundaries, the processing time of NIL, especially of thermal-NIL which consumes more tact time than that of UV-NIL, can be significantly improved. In this paper it is aimed to elucidate how the cavity-filling process of NIL can be influenced by the slip phenomena at boundaries and to what degree those phenomena increase the process rate. To do so, computational fluid dynamics(CFD) analysis of cavity filling process has been carried out. Also, the effect of mold pattern shape and initial thickness of polymer resist were considered in the analysis, as well.

Technical and Economical Comparison of Micro Powder Injection Molding

  • Atre, Sundar V.;Wu, Carl L.;Hwang, Chul-Jin;Zauner, Rudolf;Park, Seong-Jin;German, Randall M.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.45-46
    • /
    • 2006
  • In recent years, micro powder injection molding $(\mu-PIM)$ is being explored as an economical fabrication method for microcomponents in microsystems technology (MST). Technical and economic comparison was performed for $\mu-PIM$ processes. Molding experiment and simulation during the filling process were performed to evaluate several different geometries and processing conditions. The influence of material parameters and process conditions on mold filling were examined as a function of features size using microchannels as an example. It was found that the heat conductivity and viscosity of feedstock, geometry and mold temperature were the most critical parameters for complete filling of micro features.

  • PDF

Numerical Analysis of Resin Filling Process for a Molded Dry-type Potential Transformer (몰드형 건식 계기용 변압기 제작을 위한 수지 충진 해석 연구)

  • Kim, Moosun;Jang, Dong Uk;Kim, Seung Mo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.511-517
    • /
    • 2016
  • Current oil-type potential transformers for trains are filled with insulating oil, which could have problems like explosions due to rising inner pressure during train operation. Therefore, mold and dry-type potential transformers are being developed to prevent explosions. One problem in manufacturing mold-type transformers is preventing void formation around the coiled core inside the mold during epoxy filling, which could cause an electrical spark. Micro voids can remain in the resin after filling, and macro voids can occur due to the structure shape. A transformer that is being developed has a cavity at the junction of the core and the coil for better performance, and when highly viscous epoxy flows inside the cavity channel, macro voids can form inside it. Therefore, in this study, the free-surface flow of the mold filling procedure was analyzed numerically by applying the VOF method. The results were used to understand the phenomena of void formation inside the cavity and to modify the process conditions to reduce voids.