• Title/Summary/Keyword: molar ratios

Search Result 301, Processing Time 0.026 seconds

Site Competition of Ca2+ and Cs+ Ions in the Framework of Zeolite Y (Si/Al = 1.56) and Their Crystallographic Studies (제올라이트 Y (Si/Al = 1.56) 골격 내의 Ca2+과 Cs+ 이온의 자리 경쟁 및 그들의 결정학적 연구)

  • Kim, Hu Sik;Park, Jong Sam;Lim, Woo Taik
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.4
    • /
    • pp.235-248
    • /
    • 2018
  • The present work was performed in order to study the effect of competing cation of $Ca^{2+}$ ion on ion exchange of $Cs^+$ on zeolite Y (Si/Al = 1.56). Three single-crystals of fully dehydrated and partially $Cs^+$-exchanged zeolites Y (Si/Al = 1.56) were prepared by the flow method using mixed ion-exchange solutions. The $CsNO_3:Ca(NO_3)_2$ molar ratios of the ion exchange solution were 1 : 1 (crystal 1), 1 : 100 (crystal 2), and 1 : 250 (crystal 3) with a total concentration of 0.05 M. The single-crystals were then vacuum dehydrated at 723 K and $1{\times}10^{-4}Pa$ for 2 days. The structures of the crystals were determined by single-crystal synchrotron X-ray diffraction technique in the cubic space group $Fd{\bar{3}}m$, at 100(1) K. The unit-cell formulas of crystals 1, 2, and 3 were ${\mid}Cs_{21}Ca_{27}{\mid}[Si_{117}Al_{75}O_{384}]-FAU$, ${\mid}Cs_2Ca_{36.5}{\mid}[Si_{117}Al_{75}O_{384}]-FAU$, and ${\mid}Cs_1Ca_{37}{\mid}[Si_{117}Al_{75}O_{384}]-FAU$, respectively. In all three crystals, the $Ca^{2+}$ ions preferred to occupy site I in the D6Rs, with the remainder occupying sites I', II', and II. On the other hand, the significant differences in the fractional distribution of $Cs^+$ ions are observed depending on the intial $Cs^+$ concentrations in given ion exchange solution. In Crystal 1, $Cs^+$ ion are located at sites II', II, III, and III', and in crystal 2, at sites II, IIIa, and IIIb. In crystal 3, $Cs^+$ ions are only located at sites IIIa and IIIb. The degree of $Cs^+$ ion exchange decreased sharply from 28.0 to 2.7 to 1.3 % as the initial $Ca^{2+}$ concentration increases and the $Cs^+$ content decreases.