• Title/Summary/Keyword: moisture content prediction

Search Result 142, Processing Time 0.023 seconds

Prediction of moisture contents in green peppers using hyperspectral imaging based on a polarized lighting system

  • Faqeerzada, Mohammad Akbar;Rahman, Anisur;Kim, Geonwoo;Park, Eunsoo;Joshi, Rahul;Lohumi, Santosh;Cho, Byoung-Kwan
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.995-1010
    • /
    • 2020
  • In this study, a multivariate analysis model of partial least square regression (PLSR) was developed to predict the moisture content of green peppers using hyperspectral imaging (HSI). In HSI, illumination is essential for high-quality image acquisition and directly affects the analytical performance of the visible near-infrared hyperspectral imaging (VIS/NIR-HSI) system. When green pepper images were acquired using a direct lighting system, the specular reflection from the surface of the objects and their intensities fluctuated with time. The images include artifacts on the surface of the materials, thereby increasing the variability of data and affecting the obtained accuracy by generating false-positive results. Therefore, images without glare on the surface of the green peppers were created using a polarization filter at the front of the camera lens and by exposing the polarizer sheet at the front of the lighting systems simultaneously. The results obtained from the PLSR analysis yielded a high determination coefficient of 0.89 value. The regression coefficients yielded by the best PLSR model were further developed for moisture content mapping in green peppers based on the selected wavelengths. Accordingly, the polarization filter helped achieve an uniform illumination and the removal of gloss and artifact glare from the green pepper images. These results demonstrate that the HSI technique with a polarized lighting system combined with chemometrics can be effectively used for high-throughput prediction of moisture content and image-based visualization.

A Study on the Measurement of Physical Properties for Miscellaneous Cereal Crops Sorting (잡곡 선별을 위한 물성 측정에 관한 연구)

  • Kim, Hoon;Lee, Hyo-Jai;Han, Jae Woong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.354-360
    • /
    • 2020
  • This study examined the factors for sorting miscellaneous cereal crops using a rice-sorting device by analyzing the physical characteristics according to the moisture content. The initial moisture contents of miscellaneous cereal were 16.3, 19.8, and 16.5%, respectively. The samples were used in the experiment after drying to five levels. The width, length, and area of the samples increased with increasing moisture content except for the roundness, and all the prediction models were developed with a first-order linear equation. The bulk density of Italian millet and sorghum increased with increasing moisture content, whereas the bulk density of common millet was unaffected by the change in moisture content. The terminal velocity of the samples increased with increasing moisture content, and a first-order linear equation was used to develop the prediction models. The measured physical properties of the miscellaneous cereal crops based on the changes in the moisture content could be expressed using a first-order experimental model equation. Therefore, the rice-sorting device could be applied to the terminal velocity, but the other device applying the geometrical characteristics and bulk density was required to change the design of the process depending on the type of grain.

Development of a Constituent Prediction Model of Domestic Rice Using Near Infrared Reflectance Analyzer(I) -Constituent Prediction Model of Brown and Milled Rice- (근적외선분석계를 이용한 국내산 쌀의 성분예측모델 개발(I) -현미와 백미의 성분예측모델-)

  • 한충수;동하원강
    • Journal of Biosystems Engineering
    • /
    • v.21 no.2
    • /
    • pp.198-207
    • /
    • 1996
  • To measure the moisture content, protein and viscosity of brown and milled rice with Near Infrared Reflectance(NIR) analyzer, the comparison and analysis of the data from the chemical analysis and NIR analyzer were conducted. The purpose of this study is to find out the fundamental data required for the prediction of rice qualify and taste rank, and to develop a measuring method of constituents and physical characteristics of domestic rice with NIR analyzer. The important results can be summarized as follows. 1. The $r^2$ and SEC of moisture calibration from brown rice powder were 0.87 and 0.09 respectively, those of milled rice powder were 0.95 and 0.08 respectively. 2. The $r^2$ and SEC of protein calibration from brown rice powder were 0.83 and 0.20 respectively, those of milled rice powder were 0.86 and 0.20 respectively. 3. The $r^2$ and SEC of viscosity calibration from brown rice powder were 0.36 and 15.50 respectively, those of milled rice powder were 0.55 and 12.98 respectively. Further study is required to develop better prediction model for viscosity. It is necessary the continuous study including wavelength selection, because $r^2$ is small for practical use. 4. The regression equation for one rice variety was nearly coincident with other. Therefore, it is required that the prediction model should be developed for the all rice samples.

  • PDF

Development of a Constituent Prediction Model of Domestic Rice Using Near Infrared Reflectance Analyzer(II) - Prediction of Brown and Milled Rice Protein Content and Brown Rice Yield from undried Paddy - (근적외선 분석계를 이용한 국내산 쌀의 성분 예측모델 개발(II) -생벼를 이용한 현미.백미의 단백질 함량과 현미수율 예측-)

  • 한충수;연광석;고과이랑
    • Journal of Biosystems Engineering
    • /
    • v.23 no.3
    • /
    • pp.253-258
    • /
    • 1998
  • The part I was for developing regression models to predict the moisture content, protein content and viscosity of brown and milled rice using Near Infrared(NIR) Reflectance analyzer. The purpose of this study(part II) is to measure fundamental data required for the prediction of rice quality, and to develop regression models to predict the protein content of brown and milled rice, brown rice yield from undried paddy powder by using Near Infrared(NIR) Reflectance analyzer. The results of this study were summarized as follows : The predicted values of protein contents obtained from the undried paddy powder were well correlated to the measured values from brown and milled rice. The predicted yields of brown rice from undried paddy powder were not well correlated to the lab measured values from dried paddy. Continuous study in wavelength selection and of constituent relationship is necessary for practical application.

  • PDF

Development of a Constituent Prediction Model of Domestic Rice Using Near Infrared Reflection Analyzer (II)-Prediction of Brown and Milled Rice Protein Content and Brown Rice Yield from Undried Paddy (근적외선 분석계를 이용한 국내산 쌀의 성분예측모델 개발(II)-생벼를 이용한 현미.백미의 단백질 함량과 현미수율 예측)

  • ;;J.R. Warashina
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1998.06b
    • /
    • pp.171-177
    • /
    • 1998
  • The part Ⅰ was for developing regression models to predict the moisture content, protein content and viscosity of brown and milled rice using Near Unfrared (NIR) Reflectance analyzer. The purpose of this study(part Ⅱ) is to measure fundamental data required for the prediction of rice quality , and to develop regression models to predict the protein content of brown and milled rice, brown rice yield from undreid paddy powder by using Near Infrared (NIR) Reflectance analyzer. The results of this study were summarized as follows . The predicted values of protein contents obtained from the undried paddy powder were will correlated to the measured values from brown and milled rice. The predicted yields of brown rice from undried paddy powder were not well correlated to be lab measured values from dried paddy. Continuous study in wavelength selection and of constituent relationship is necessary for practical application.

  • PDF

Infiltration and Water Redistribution in Sandy Soil: Analysis Using Deep Learning-Based Soil Moisture Prediction (딥러닝 기반 함수비 예측을 이용한 사질토 지반 침투 및 수분 재분포 분석)

  • Eun Soo Jeong;Tae Ho Bong;Jung Il Seo
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.4
    • /
    • pp.490-501
    • /
    • 2023
  • Laboratory column tests were conducted to analyze infiltration and water redistribution processes on the basis of rainfall. To efficiently measure moisture content within soil layers, this research developed a predictive model grounded in a convolutional neural network (CNN), a deep learning technique. The digital images obtained during the column tests were incorporated into the established CNN. The moisture content of each soil layer over time was effectively measured. The measured values were also in relatively good agreement with the moisture content determined using the moisture sensors installed for each soil layer. The use of CNN enabled a comprehensive understanding of continuous moisture distribution within the soil layers, as well as the infiltration process according to soil texture and initial moisture content conditions.

Moisture Content Change of Korean Red Pine Logs During Air Drying: II. Prediction of Moisture Content Change of Korean Red Pine Logs under Different Air Drying Conditions (소나무 원목의 천연건조 중 함수율 변화: II. 소나무 원목의 천연건조 중 함수율 변화 예측)

  • HAN, Yeonjung;CHANG, Yoon-Seong;EOM, Chang-Deuk;LEE, Sang-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.6
    • /
    • pp.732-750
    • /
    • 2019
  • Air drying was carried out on 15 Korean red pine logs to provide a prediction model of the moisture content (MC) change in the wood during drying. The final MC was 17.4% after 880 days since the beginning of air drying in the summer for 6 Korean red pine logs with 68.7% initial MC. The final MC was 16.0% after 760 days since the beginning of air drying in the winter for 9 Korean red pine logs with 35.8% initial MC. A regression model with R-squared of 0.925 was obtained as a result of multiple regression analyses with initial MC, top diameter, temperature, relative humidity, and wind speed as independent variable and and MC change during air drying as dependent variable. The initial MC and top diameter, which is the characteristic of Korean red pine, have greater effect on the MC decrease during air drying compared to meteorological factors such as the temperature, relative humidity, and wind speed. Two-dimensional mass transfer analysis was performed to predict the MC distribution of Korean red pine logs during air drying. Two prediction models with different air drying days and different meteorological factors for the determination of the diffusion coefficient and surface emission coefficient were presented. The error between the different two methods ranged from 0.1 to 0.8% and the difference from the measured value ranged from 2.2 to 3.6%. By measuring the internal MC during air drying of Korean pine logs with various initial MC and diameter, and calculating the moisture transfer coefficient in wood for each meteorological condition, the error of the prediction model can be reduced.

Determination of Human Skin Moisture in the Near-Infrared Region from 1100 to 2200 nm by Portable NIR System (1100∼2200 nm 파장 영역의 휴대용 근적외선 분광분석기를 이용한 사람피부의 수분측정)

  • 안지원;서은정;우영아;김효진
    • YAKHAK HOEJI
    • /
    • v.47 no.3
    • /
    • pp.148-153
    • /
    • 2003
  • Skin moisture is an important factor in skin health. Measurement of moisture content can provide diagnostic information on the condition of skin. In this study, a portable near-infrared (NIR) system was newly integrated with a photo diode array detector that has no moving parts, and this system has been successfully applied for the evaluation of human skin moisture. Diffuse reflectance spectra were collected and transformed to absorbance using 1 nm step size over the wavelength range of 1100 nm to 2200 nm. Partial least squares regression (PLSR) was applied to develop a calibration model. For practical use for the evaluation of human skin moisture, the PLS model for human skin moisture was developed in vivo using the portable NIR system on the basis of the relative water content values of stratum corneum from the conventional capacitance method. The PLS model showed a good correlation. The calibration with the use of PLS model predicted human moisture with a standard error of prediction (SEP) of 3.5 at 1120∼1730 nm range. This study showed the possibility of skin moisture measurement using portable NIR system.

Suggestion and Evaluation for Prediction Method of Landslide Occurrence using SWAT Model and Climate Change Data: Case Study of Jungsan-ri Region in Mt. Jiri National Park (SWAT model과 기후변화 자료를 이용한 산사태 예측 기법 제안과 평가: 지리산 국립공원 중산리 일대 사례연구)

  • Kim, Jisu;Kim, Minseok;Cho, Youngchan;Oh, Hyunjoo;Lee, Choonoh
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.6
    • /
    • pp.106-117
    • /
    • 2021
  • The purpose of this study is prediction of landslide occurrence reflecting the subsurface flow characteristics within the soil layer in the future due to climate change in a large scale watershed. To do this, we considered the infinite slope stability theory to evaluate the landslide occurrence with predicted soil moisture content by SWAT model based on monitored data (rainfall-soil moisture-discharge). The correlation between the SWAT model and the monitoring data was performed using the coefficient of determination (R2) and the model's efficiency index (Nash and Sutcliffe model efficiency; NSE) and, an accuracy analysis of landslide prediction was performed using auROC (area under Receiver Operating Curve) analysis. In results comparing with the calculated discharge-soil moisture content by SWAT model vs. actual observation data, R2 was 0.9 and NSE was 0.91 in discharge and, R2 was 0.7 and NSE was 0.79 in soil moisture, respectively. As a result of performing infinite slope stability analysis in the area where landslides occurred in the past based on simulated data (SWAT analysis result of 0.7~0.8), AuROC showed 0.98, indicating that the suggested prediction method was resonable. Based on this, as a result of predicting the characteristics of landslide occurrence by 2050 using climate change scenario (RCP 8.5) data, it was calculated that four landslides could occur with a soil moisture content of more than 75% and rainfall over 250 mm/day during simulation. Although this study needs to be evaluated in various regions because of a case study, it was possible to determine the possibility of prediction through modeling of subsurface flow mechanism, one of the most important attributes in landslide occurrence.

Non-destructive quality prediction of domestic, commercial red pepper powder using hyperspectral imaging

  • Sang Seop Kim;Ji-Young Choi;Jeong Ho Lim;Jeong-Seok Cho
    • Food Science and Preservation
    • /
    • v.30 no.2
    • /
    • pp.224-234
    • /
    • 2023
  • We analyzed the major quality characteristics of red pepper powders from various regions and predicted these characteristics nondestructively using shortwave infrared hyperspectral imaging (HSI) technology. We conducted partial least squares regression analysis on 70% (n=71) of the acquired hyperspectral data of the red pepper powders to examine the major quality characteristics. Rc2 values of ≥0.8 were obtained for the ASTA color value (0.9263) and capsaicinoid content (0.8310). The developed quality prediction model was validated using the remaining 30% (n=35) of the hyperspectral data; the highest accuracy was achieved for the ASTA color value (Rp2=0.8488), and similar validity levels were achieved for the capsaicinoid and moisture contents. To increase the accuracy of the quality prediction model, we conducted spectrum preprocessing using SNV, MSC, SG-1, and SG-2, and the model's accuracy was verified. The results indicated that the accuracy of the model was most significantly improved by the MSC method, and the prediction accuracy for the ASTA color value was the highest for all the spectrum preprocessing methods. Our findings suggest that the quality characteristics of red pepper powders, even powders that do not conform to specific variables such as particle size and moisture content, can be predicted via HSI.