• Title/Summary/Keyword: moisture content

Search Result 6,011, Processing Time 0.035 seconds

Effects of Maturing Period and Moisture Content of Swine Manure on Composting Potentials (돈분의 수분조절 및 부숙기간이 퇴비화에 미치는 영향)

  • 김원호;정광화;서성;백광수;신동은;유성오;김원영
    • Journal of Animal Environmental Science
    • /
    • v.4 no.1
    • /
    • pp.47-53
    • /
    • 1998
  • The purpose of this study was to investigate the change of temperature, moisture content, weight and chemical properties in swine manure during the maturing process and moisture content of swine manure. The manure production on the early time(1 days), middle(25 days: and late(50 days) were made by moisture 45%, 55%, 65%, 75% in swine manure, according to manure treatment of the early time, the highest temperature of swine manure treatment was 59$^{\circ}C$ as moisture 75% after mixed 24 hours, the lowest 45% in mixed 25 days(middle time), 32$^{\circ}C$ as moisture 45% in mixed 50 days(late time). 2. Weight change during maturing manure, the most treatment of weight decrease was 17.4% as moisture 45%, the least of those was 12.2% as moisture 75% during maturing process of swine manure. 3. Volume change during maturing manure, the most treatment of volume decrease was 37.1% as moisture 65%, the least of those was 32.1% as moisture 55% during maturing swine manure, but not big difference between treatment. 4. T-N, P2O5, K2O content of compost were increased during maturing process, On the contrary, T-C content and C/N ratio were reduced.

Effect of Partial Oxidation of Wood and RDF in a Fluidized Bed (유동상 반응로 조건에서 목재와 RDF 부분 산화의 영향)

  • Kim, Tae-Hyun;Choi, Sang-Min
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.2
    • /
    • pp.23-32
    • /
    • 2008
  • Gasification characteristics in the fluidized bed reactor are essential for the design of a gasification furnace to optimize the operation condition. Moisture content of the solid fuel is one of the important factors to influence directly the gasification characteristics. So it is necessary to investigate the effect of moisture content of solid fuel in partial oxidation condition. Gasification characteristics are investigated with results from thermogravimetric analyzer and lab-scale fluidized bed reactor for wood and RDF samples along with changing moisture contents. Additionally lab-scale fluidized bed reactor was run continuously and gas concentrations at the exit were measured. It is observed that the rate of reaction in partial oxidation condition is between the results from the combustion environment and from the inert condition. Moisture content in a particle slows down the heating rate of a particle. So, reaction is delayed by the moisture content. However, RDF samples those are easy to break-up don't show the effect of moisture content. The result of continuous operation condition shows that proper moisture content promotes gasification because steam from the particles helps gasification of the solid fuel. A simulation to predict the syn-gas composition was conducted by the Aspen Plus process simulator. The cold gas efficiency of the experiment was compared with results from the simulation.

  • PDF

Flow Properties of Water Additive Corn-Cob-Mix for Handling by Pump (수분(水分)첨가된 옥수수(Corn-Cob-Mix)의 펌프 운송(運送) 시(時)의 유체성질(流體性質) 구명(究明))

  • Oh, I.H.;Heege, H.J.
    • Journal of Biosystems Engineering
    • /
    • v.14 no.1
    • /
    • pp.33-40
    • /
    • 1989
  • The flow properties of water added com-cob-mix(CCM) were studied in order to provide basic information for designing its pumping system. For the study, a model system similar to actual situation was constructed. From the experiment, it can be concluded that the flow properties of the water added CCM has close relationship with its moisture content as follows; 1. The pressure drop caused by friction was very low when the moisture content of water added CCM was more than 70%. However, when the moisture content of the material is about 60%, the pressure drop increases up to 10 kPa/m at low pumping speed, and 20 kPa/m at high pumping speed, respectively. 2. The water added CCM having about 65% moisture content showed pseudo-plastic flow characteristics. 3. As the moisture content of the material decreases, the shear stress increases more rapidly than the shear rate does. Finally, below approximately 60% moisture, the shear stress becomes a linear relationship with the shear rate. 4. It was possible to pump the material having the moisture content down to 58% through a pipe having 80 mm diameter by a pump operating at 234 rpm. However, by either increasing the diameter of the pipe or decreasing the pumping speed, it can be possible to pump the material having lower moisture content than 55%.

  • PDF

Effect of Partial Oxidation of Wood and RDF in a Fluidized Bed (유동상 반응로 조건에서 목재와 RDF 부분가스화의 영향)

  • Kim, Tae-Hyun;Choi, Sang-Min
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.161-167
    • /
    • 2007
  • Gasification characteristics in the fluidized bed reactor are essential for the design of a gasification furnace to optimize the operation condition. Moisture content of the solid fuel is one of the important factors to influence directly the gasification characteristics. So it is necessary to investigate the effect of moisture content of solid fuel in gasification process. Gasification characteristics are investigated with results from thermogravimetric analyser and lab-scale fluidized bed reactor for wood and RDF samples along with changing moisture contents. Additionally lab-scale fluidized bed reactor was run continuously and gas concentrations at the exit were measured. It is observed that the rate of reaction in partial oxidation condition is in between the results from the combustion environment and from the inert condition. Moisture content in a particle slows down the heating rate of a particle. So, reaction time is delayed by the moisture content. However, RDF samples that are easy to break-up doesn't show the effect of moisture content. The results of continuous operation condition shows that proper moisture content promotes gasification because steam from the particles helps gasifcation of the sold fuel.

  • PDF

Influence of Moisture Content and Seed Dimensions on Mechanical Oil Expression from African Oil Bean (Pentaclethra macrophylla Benth) Seed

  • Aremu, Ademola K.;Ogunlade, Clement A.
    • Journal of Biosystems Engineering
    • /
    • v.41 no.3
    • /
    • pp.193-200
    • /
    • 2016
  • Purpose: New low-cost oilseeds are needed to meet an ever-increasing demand for oil for food, pharmaceutical, and industrial applications. African oil bean seed is a tropical crop that is underutilized and has high oil yields, but there have been no studies conducted on its mechanical oil expression up to now. The objective of this work was to investigate the effect of moisture content and seed dimensions on mechanical oil expression from the seeds. Methods: Fresh oil bean seeds were procured, de-hulled, and cleaned. Initial seed moisture content, obtained in accordance with the ASAE standard, was 12% dry basis (db). The seeds were further conditioned by dehydration and rehydration prior to oil expression to obtain four other moisture levels of 8, 10, 14, and 16% db. The major diameter of the seeds was measured using digital vernier calipers, and the seeds were classified into size dimensions (< 40, 41-45, 46-50, 51-55, and > 55 mm). The oil yield and expression efficiency were obtained in accordance with standard evaluation methods. Results: The highest oil yield and expression efficiency (47.74% and 78.96%, respectively) were obtained for a moisture content of 8% db and seed dimensions of < 40 mm, while the lowest oil yield and expression efficiency (41.35% and 68.28%, respectively) were obtained for a moisture content of 14% db and seed dimensions between 51-55 mm. A mathematical model was developed to predict oil yield for known moisture content and seed dimensions, with a coefficient of determination $R^2$ of 95% and the confidence level of the predictive model of 84.17%. The probability of prediction F ratio showed that moisture content influence was more significant than seed dimensions. Conclusions: The higher the moisture content and larger the seed dimensions, the lower the oil yield from African oil bean seeds.

Formaldehyde Emissions and Moisture Content Change of Wood Composites during Bake-out

  • Lee, Young-Kyu;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.2
    • /
    • pp.101-109
    • /
    • 2012
  • Wood composites are a hygroscopic material and have ability to exchange its moisture content with air. This study investigated the formaldehyde emission and moisture content change of four wood composites (particleboard (PB), medium density fiberboard (MDF), high density fiberboard (HDF), laminated HDF (L-HDF)) as a function of bake-out temperature and time. The composites were baked out for 1, 3, 5, 7, 10, 14, 21, and 28 days at temperatures of $20{\pm}2$, $35{\pm}2$, and $50{\pm}2^{\circ}C$ in a dry oven. The moisture content change was used to determine the emission bake-out of the composites. Best bake-out time results were obtained with after 7 days all composites. Formaldehyde emission values of composites decreased with decreasing moisture content for both temperatures. The formaldehyde emission results of bake-out temperature 35 and $50^{\circ}C$ showed a similar tendency.

Effect of Moisture Content and Wood Structure on the Amenability of Japanese Red Pine (Pinus densiflora S. et Z.) to Liquid Treatment

  • Ali Ahmed, Sheikh;Chong, Song-Ho;Hong, Seung-Hyun;Kim, Ae-Ju;Chun, Su-Kyoung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.2
    • /
    • pp.108-116
    • /
    • 2010
  • This paper explains the effects of wood drying on treatability (as determined by water uptake) of Japanese red pine (Pinus densiflora S. et Z.) at the sevenmoisture content (MC) levels above and below the fiber saturation point (FSP). According to the experimental results, it was found that water uptake (as the percentage of void volume filledwith distilled water, VVF%) was influenced by level of moisture content and percentage of void volume filled was improved effectively by kiln drying process. A significant relationship between moisture content and treatability was established. Permeability and liquid uptake were decreased above the FSP due to the effect of the less void space available in wood. Even though increased liquid uptake was observed at lower moisture content, no significant differences was observed moisture content below 20%. Therefore, this species need to be initially dried below FSP before treated with liquids. But drying moisture content below 10% might not be economical for the commercial purpose comparing drying the wood between 10 and 20% moisture content. The result of this study inferred that the treatability of pine wood can be improved by reducing the moisture content up to a certain level of 10~20% for allowing better performance.

A Study on the Effects of Molding Water Content and Cement Content on Unconfined Compressive Strength of Soil Cement Mixtures (시멘트함량 및 다짐함수비가 Soil Cement의 압축강도에 미치는 영향에 관한 연구)

  • 김재영;강예묵
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.17 no.1
    • /
    • pp.3685-3701
    • /
    • 1975
  • This study was conducted to investigate the strength of soil cements for varied molding water content and cement content(3,6,9,12%) in four cementstabilized soils(KY: sand, MH: sad, SS: sandy loam, JJ: loam). The eoperimental results obtainedfrom unconfined compressive strength tests are asfollows: 1. The optimum moisture content increased in accordance with the increase of the cement while maximum dry density didn't change uniformly. 2. The moisture content for maximum strength was higher than the optimum moisture content in the higher cement content. Moisture-density curves showed a dull peak in the higher cement contents, on the other hand, a sharp peak in the lower cement contents. 3. In molding the specimen with the approximate optimum moisture content, the maximum strength showed at the wet side of the optimum moisture content. 4. SS and JJ maybe used as cement-stabilized base of road to require 300PSI of compressive strength cured seven days, but MH and KY may be not adequate. 5. In soil cement, the better the grain size distribution was, the stronger the compressive strength was itn general. 6. The relation between 28-day strengh and 7-day strength in the cementstabilized four soils may be expressed as follows: q28=1.55q7+1.5 in which q28:28-day strength. q7:7-day strength.

  • PDF

Effect of moisture on the compressive strength of low-strength hollow concrete blocks

  • Syiemiong, Hopeful;Marthong, Comingstarful
    • Computers and Concrete
    • /
    • v.23 no.4
    • /
    • pp.267-272
    • /
    • 2019
  • In order to study the effect of moisture on the compressive strength of low-strength hollow concrete blocks, an experimental study was carried out on 96 samples of locally manufactured hollow concrete blocks collected from three different locations. Uniaxial compression tests were conducted on dry specimens and three types of saturated specimens with moisture contents of 30%, 50% and 80% respectively. The range of moisture content adopted covered the range within which the concrete block samples are saturated in the dry and monsoon seasons. The compressive strength of low-strength hollow concrete blocks decreases with increase in moisture content and the relationship between compressive strength of hollow concrete blocks and their moisture content can be considered to be linear. However, the strength degradation of 30% moist concrete blocks with respect to dry blocks is relatively low and can be considered to be comparable to dry concrete blocks. A formula indicating the relationship between the moisture content and compressive strength of low-strength hollow concrete blocks is also proposed.

Moisture Sorption Characteristics of Model Food Powders (모형 식품 분말의 흡습 특성)

  • Kim, Dong-Woo;Chang, Kyu-Seob;Kim, Suk-Shin;Lee, Un-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.1146-1150
    • /
    • 1996
  • The purpose of this research was to provide fundamental data required for the process design of conveying, storage and processing of food powders. Potato starch, corn starch, wheat protein, soybean protein, and model food powders prepared by mixing potato starch and wheat protein were selected and their sorption characteristics such as equilibrium moisture content, monolayer moisture content, and sorption enthalpy were determined. Equilibrium moisture content and monolayer moisture content of high starch powders were higher than those of high protein powders, and the equilibrium moisture content decreased with temperature. The determination coefficients of the regression equations to predict the equilibrium moisture content of food powders were from 0.997 to 0.999. Sorption enthalpy experiments indicated that powder of high moisture content showed lower sorption than that of low· moisture content, and the high protein powder showed lower sorption than high starch powder.

  • PDF