• Title/Summary/Keyword: moisture balance

Search Result 167, Processing Time 0.029 seconds

Estimation of Antecedent Moisture Condition in Rainfall-Runoff Modeling Based on Soil Water Balance Model (Soil Water Balance 모델을 이용한 강우유출 모형의 초기함수 조건 추정)

  • Lee, Ye-Rin;Kang, Subin;Shim, Eunjeung;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.307-307
    • /
    • 2021
  • 개념적 강우-유출모형에서 토양수분과 관련된 물리적 거동은 간략화 된 형태로 강우 및 온도자료를 활용하여 중간변량(state variable)으로 간접적으로 고려되고 있다. 특히 강우-유출모형에 초기함수 조건은 선행함수조건을 고려하여 수문지질학적 평가를 통하여 결정되어야 하나, 일반적으로 가정되거나 모형에서 간략화 된 분석과정을 통해 추정되고 있다. 본 연구에서는 토양의 Water Balance 모형 기반의 개념적 토양수분 추정모형을 활용하였다. 토양수분의 시간적 변동성을 평가하는데 있어서 연속적으로 측정된 In-situ 토양수분 자료를 이용하여 모형의 적합성을 평가하였다. Green-Ampt 방법과 중력식 침투방법과 온도를 활용한 증발산 추정기법을 연계한 토양함수 평가 모형을 개발하였다. In-situ 토양수분 자료와 유역의 강수량 및 온도자료를 이용한 관련 매개변수를 Bayesian 기법을 통해 추정하였으며 매개변수의 민감도를 평가하여 제시하였다. 최종적으로 제안된 모형의 활용측면에서 강우-유출모형의 초기함수 조건으로써의 역할을 평가하였다. 구체적으로 첨두유량 및 유출고와 초기함수조건과의 관계를 제시하고 강우-유출모형에서 활용방안을 제시하고자 한다.

  • PDF

Experimental Retrieval of Soil Moisture for Cropland in South Korea Using Sentinel-1 SAR Data (Sentinel-1 SAR 데이터를 이용한 우리나라 농지의 토양수분 산출 실험)

  • Lee, Soo-Jin;Hong, Sungwook;Cho, Jaeil;Lee, Yang-Won
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_1
    • /
    • pp.947-960
    • /
    • 2017
  • Soil moisture plays an important role to affect the Earth's radiative energy balance and water cycle. In general, satellite observations are useful for estimating the soil moisture content. Passive microwave satellites have an advantage of direct sensitivity on surface soil moisture. However, their coarse spatial resolutions (10-36 km) are not suitable for regional-scale hydrological applications. Meanwhile, in-situ ground observations of point-based soil moisture content have the disadvantage of spatially discontinuous information. This paper presents an experimental soil moisture retrieval using Sentinel-1 SAR (Synthetic Aperture Radar) with 10m spatial resolution for cropland in South Korea. We developed a soil moisture retrieval algorithm based on the technique of linear regression and SVR (support vector regression) using the ground observations at five in-situ sites and Sentinel-1 SAR data from April to October in 2015-2017 period. Our results showed the polarization dependency on the different soil sensitivities at backscattered signals, but no polarization dependence on the accuracies. No particular seasonal characteristics of the soil moisture retrieval imply that soil moisture is generally more affected by hydro-meteorology and land surface characteristics than by phenological factors. At the narrower range of incidence angles, the relationship between the backscattered signal and soil moisture content was more distinct because the decreasing surface interference increased the retrieval accuracies under the condition of evenly distributed soil moisture (during the raining period or on the paddy field). We had an overall error estimate of RMSE (root mean square error) of approximately 6.5%. Our soil moisture retrieval algorithm will be improved if the effects of surface roughness, geomorphology, and soil properties would be considered in the future works.

Change in Nitrogen Fractions and Ruminal Nitrogen Degradability of Orchardgrass Ensiled at Various Moisture Contents and the Subsequent Effects on Nitrogen Utilization by Sheep

  • Nguyen, H.V.;Kawai, M.;Takahashi, J.;Matsuoka, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.9
    • /
    • pp.1267-1272
    • /
    • 2005
  • The effect of various moisture contents of fresh forage on the change in nitrogen (N) fractions, in vitro ruminal N degradability, and the subsequent N utilization of silage in sheep were evaluated. Orchardgrass (Dactylis glomerata L.) with high (HM, 76%), medium (MM, 65%) and low (LM, 40%) moisture contents were ensiled into silos of 120 L capacity for 120 days. A nitrogen balance trial was conducted using a 4${\times}$4 Latin square design consisting of four dietary treatments (i.e. fresh forage, HM, MM and LM silages) and four wethers. With respect to N fractions, fraction 1 (buffer solution soluble N), fraction 2 (buffer solution insoluble N-neutral detergent insoluble N), fraction 3 (neutral detergent insoluble N-acid detergent insoluble N), and fraction 4 (acid detergent insoluble N) were determined. The proportion of fraction 1 in silages tended to decrease, while the in vitro ruminal degradability of insoluble N increased (p<0.05) with lower moisture contents at ensiling. Consequently, nitrogen utilization in sheep tended to improve as the moisture content of ensiled grass was decreased, with a negative correlation (p<0.01) between urinary N and the in vitro ruminal degradability of insoluble N. The averaged N retentions for HM, MM, and LM silage treatments were 59, 73 and 79% of that for fresh forage, respectively.

Effects of Climatic Condition on Stability and Efficiency of Crop Production (농업 기상특성과 작물생산의 효율 및 안전성)

  • Robert H. Shaw
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.27 no.4
    • /
    • pp.296-313
    • /
    • 1982
  • At a time when world population and food supply are in a delicate balance, it is essential that we look at factors to improve this balance. We can alter the environment to better fit the plant's needs, or we can alter the plant to better fit the environment. Improved technology has allowed us to increase the yield level. For moderately detrimental weather events technology has generally decreased the yield variation, yet for major weather disasters the variation has increased. We have raised the upper level, but zero is still the bottom level. As we concentrate the production of particular crops into limited areas where the environment is closest to optimum, we may be increasing the risk of a major weather related disaster. We need to evaluate the degree of variability of different crops, and how weather and technology can interact to affect it. The natural limits of crop production are imposed by important ecological factors. Production is a function of the climate, the soil, and the crop and all activities related to them. In looking at the environment of a crop we must recognize these are individuals, populations and ecosystems. Under intensive agriculture we try to limit the competition to one desired species. The environment is made up of a complex of factors; radiation, moisture, temperature and wind, among others. Plant response to the environment is due to the interaction of all of these factors, yet in attempting to understand them we often examine each factor individually. Variation in crop yields is primarily a function of limiting environmental parameters. Various weather parameters will be discussed, with emphasis placed on how they impact on crop production. Although solar radiation is a driving force in crop production, it often shows little relationship to yield variation. Water may enter into crop production as both a limiting and excessive factor. The effects of moisture deficiency have received much more attention than moisture excess. In many areas of the world, a very significant portion of yield variation is due to variation in the moisture factor. Temperature imposes limits on where crops can be grown, and the type of crop that can be grown in an area. High temperature effects are often combined with deficient moisture effects. Cool temperatures determine the limits in which crops can be grown. Growing degree units, or heat accumulations, have often been used as a means of explaining many temperature effects. Methods for explaining chilling effects are more limited.

  • PDF

Effects of water addition to total mixed ration on water intake, nutrient digestibility, wool cortisol and blood indices in Corriedale ewes

  • Nejad, Jalil Ghassemi;Kim, Byong-Wan;Lee, Bae-Hun;Kim, Ji-Yung;Sung, Kyung-Il
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.10
    • /
    • pp.1435-1441
    • /
    • 2017
  • Objective: The objective of this study was to determine the effect of adding water to total mixed ration (TMR) on fresh water intake, nutrient digestibility, wool cortisol, and blood indices in Corriedale ewes under hot and humid conditions. Methods: Nine non-pregnant Corriedale ewes (ave. body weight = $41{\pm}3.5kg$) were individually fed diets based on maintenance requirements in metabolic crates. Ewes were assigned to three treatment groups according to a triplicate $3{\times}3$ Latin Square design for 3 periods of 21 days duration each (9 ewes per treatment, 27 replications). Treatments were TMR (crude protein [CP] = 16.1, total digestible nutrients = 69.1%) moisture levels for 40%, 50%, and 60%. Results: No differences were found in body weight gain among all treatment groups (p>0.05). Nitrogen balance including digestible N, retained N, and urinary and fecal N showed no change among the treatment groups (p>0.05). Fresh water intake was the lower in 50% TMR moisture group than in the other groups (p<0.05). Other than ether extract which was higher in 60% TMR moisture group (p<0.05) the differences among nutrient digestibilities including CP, organic matter, dry matter, neutral detergent fiber, acid detergent fiber, and non-fiber carbohydrate were not significant (p>0.05). No significant difference was observed for serum protein, blood urea nitrogen, glucose, and triglyceride among the treatment groups (p>0.05). Wool and blood cortisol were not different among the treatment groups (p>0.05). Blood hematology including red blood cell, white blood cells, hemoglobin, hematocrit, basophils, and eosinophils were not different among the treatment groups (p>0.05). Conclusion: It is concluded that TMR moisture at 40%, 50%, and 60% had no effects on N balance parameters, and nutrient digestibilities except for the ether extract under hot and humid conditions. Additionally there were no effects on stress conditions include wool cortisol, as well as blood cortisol levels of ewes.

Estimation of Soil Moisture and Irrigation Requirement of Upland using Soil Moisture Model applied WRF Meteorological Data (WRF 기상자료의 토양수분 모형 적용을 통한 밭 토양수분 및 필요수량 산정)

  • Hong, Min-Ki;Lee, Sang-Hyun;Choi, Jin-Yong;Lee, Sung-Hack;Lee, Seung-Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.6
    • /
    • pp.173-183
    • /
    • 2015
  • The aim of this study was to develop a soil moisture simulation model equipped with meteorological data enhanced by WRF (Weather Research and Forecast) model, and this soil moisture model was applied for quantifying soil moisture content and irrigation requirement. The WRF model can provide grid based meteorological data at various resolutions. For applicability assessment, comparative analyses were conducted using WRF data and weather data obtained from weather station located close to test bed. Water balance of each upland grid was assessed for soils represented with four layers. The soil moisture contents simulated using the soil moisture model were compared with observed data to evaluate the capacity of the model qualitatively and quantitatively with performance statistics such as correlation coefficient (R), coefficient of determination (R2) and root mean squared error (RMSE). As a result, R is 0.76, $R^2$ is 0.58 and RMSE 5.45 mm in soil layer 1 and R 0.61, $R^2$ 0.37 and RMSE 6.73 mm in soil layer 2 and R 0.52, $R^2$ 0.27 and RMSE 8.64 mm in soil layer 3 and R 0.68, $R^2$ 0.45 and RMSE 5.29 mm in soil layer 4. The estimated soil moisture contents and irrigation requirements of each soil layer showed spatiotemporally varied distributions depending on weather and soil texture data incorporated. The estimated soil moisture contents using weather station data showed uniform distribution about all grids. However the estimated soil moisture contents from WRF data showed spatially varied distribution. Also, the estimated irrigation requirements applied WRF data showed spatial variabilities reflecting regional differences of weather conditions.

Statistical Analyses of Soil Moisture Data from Polarimetric Scanning Radiometer and In-situ (Polarimetric Scanning Radiometer 와 In-situ를 이용한 토양수분 자료의 통계분석)

  • Jang, Sun Woo;Jeon, Myeon Ho;Choi, Minha;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5B
    • /
    • pp.487-495
    • /
    • 2010
  • Soil moisture is a crucial factor in hydrological system which influences runoff, energy balance, evaporation, and atmosphere. United States National Aeronautic and Space Administration (NASA) and Department of Agriculture (USDA) have established Soil Moisture Experiment (SMEX) since 2002 for the global observations. SMEX provides useful data for the hydrological science including soil moisture and hydrometeorological variables. The purpose of this study is to investigate the relationship between remotely sensed soil moisture data from aircraft and satellite and ground based experiment. C-band of Polarimetric Scanning Radiometer (PSR) that observed the brightness temperature provides soil moisture data using a retrieval algorithm. It was compared with the In-situ data for 2-30 cm depth at four sites. The most significant depth is 2-10 cm from the correlation analysis. Most of the sites, two data are similar to the mean of data at 10 cm and the median at 7 cm and 10 cm at the 10% significant level using the Rank Sum test and t-test. In general, soil moisture data using the C-band of the PSR was established to fit the Normal, Log-normal and Gumbel distribution. Soil moisture data using the aircraft and satellites will be used in hydrological science as fundamental data. Especially, the C-band of PSR will be used to prove soil moisture at 7-10 cm depths.

Estimation of Groundwater Recharge by the Water Balance Analysis using DAWAST Model (일 유출모형의 물수지 분석에 의한 지하수 함양량 추정)

  • Lee, Duk-Joo;Lee, Ho-Chun;Lee, Soon-Kwang;Kim, Tai-Cheol
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.431-434
    • /
    • 2003
  • This research developed a method for the estimation of groundwater recharge by yielding daily soil moisture content and watershed evapotranspiration from the water balance concept of the unsaturated and saturated layers in rainfall-runoff model called DAWAST. The goal of the research is to estimate the groundwater recharge fulfilling conditions of the safe discharge for any season. To meet this goal, the data of groundwater level and stream flow rate have been monitored in a study area and used to validate the model.

  • PDF

APPLICATION OF GRID-BASED KINEMATIC WAVE STORM RUNOFF MODEL(KIMSTORM)

  • Kim, Seong-Joon;Kim, Sun-Joo;Chae, Hyo-Sok
    • Water Engineering Research
    • /
    • v.1 no.4
    • /
    • pp.321-330
    • /
    • 2000
  • The grid-based KIneMatic wave STOrm Runoff Model(Kim, 1998; Kim, et al., 1998) which predicts temporal variation and spatial distribution of overland flow, subsurface flow and stream flow was evaluated at two watersheds. This model adopts the single overland flowpath algorithm and simulates surface and/or subsurface water depth at each cell by using water balance of hydrologic components. The model programmed by C-language uses ASCII-formatted map data supported by the irregular gridded map of the GRASS(Geographic Resources Analysis Support System) GIS and generates the spatial distribution maps of discharge, flow depth and soil moisture of the watershed.

  • PDF

Turbulence of the Coastal Atmospheric Surface Layer and Structure of the Coastal Atmospheric Boundary Layer (해안 대기 표층의 난류와 해안 대기 경계층의 구조)

  • Kwon, Byung-Hyuk
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.17 no.3
    • /
    • pp.404-412
    • /
    • 2005
  • The surface energy budget depends on many factors, such as the type of surface, the soil moisture and the vegetation canopy, the geographical location, daily, monthly and seasonal variations, and weather conditions. In the coastal region, the surface is not homogeneous at various scales for instance water, sand, mud, tall grass, and crops. The energy balance over the vegetation canopy was analyzed with the optical energy balance measuring system. The latent heat flux was more intensive than the sensible heat flux. The sensible heat flux was very small in summer due to the canopy effect and higher in spring and autumn. In summer the development of the atmospheric boundary depended on rather the vertical shear of wind than the sensible heat flux.