• Title/Summary/Keyword: moisture an temperature movements

Search Result 2, Processing Time 0.014 seconds

RESEARCH TRENDS IN THE CELLULOSE REINFORCED FIBROUS CONCRETE IN USA

  • Soroushian, Parviz;Ravanbakhsh, Sizvosh
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.3-23
    • /
    • 1997
  • The growth in fast-track construction and repair has prompted major efforts to develop high-early-strength concrete mix compositions. Such mixtures rely on the use of relatively high cement contents and accelerator dosages to increase the rate of strength development. The measures, however, seem to compromise the long-term performance of concrete in applications such as full-depth patches as evidenced by occasional premature deterioration of such patches. The hypothesis successfully validated in this research was that traditional methods of increasing the early-age strength of concrete, involving the use of high cement and accelerator contents, increase the moisture and thermal movements of concrete. Restraint of such movements in actual field conditions, by external or internal restraining factors, generates tensile stresses which introduced microcracks and thus increase the permeability of concrete. This increase in permeability accelerates various processes of concrete deterioration, including freeze-thaw attack. Fiver reinforcement of concrete is an effective approach to the control of microcrack and crack development under tensile stresses. Fibers, however, have not been known of accelerating the process of strength gain in concrete. The recently developed specialty cellulose fibers, however, were found in this research to be highly effective in increasing the early-age strength of concrete. This provides a unique opportunity to increase the rate of strength gain in concrete without increasing moisture an thermal movements, which actually controlling the processes of microcracking and racking in concrete. Laboratory test results confirmed the desirable resistance of specialty cellulose fiber reinforced High-early-strength concrete to restrained shrinkage microcracking an cracking, and to different processes of deterioration under weathering effects.

  • PDF

Total Precipitable Water Fields of Typhoons WALT(9407) & FAYE(9503) Derived from TOVS and SSM/I (TOVS 자료로 도출한 태풍(WALT(9407)과 FAYE(9503))에 동반된 총가강수량장)

  • 정효상
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.4
    • /
    • pp.315-324
    • /
    • 1998
  • The total precipitable water fields derived from HIRS(High Resolution Infrared Radiometer Sounder)and MSU(Microwave Sounding Unit) measurements of TOVS and brightness temperature of SSM/I were used to investigate the evolution of moisture fields for the Typhoon WALT(9407) which after landing in Japan it became tropical depression in Korea-Japan Strait, and FAYE(9503) which was the first tropical storm of 1995 to became a typhoon, respectively. The total precipitable water derived from TOVS observations is delineated according to the evolutions of WALT and FAYE movements because total precipitable water fields of TY WALT(9407) and FAYE9\(9503) were largely controlled by horizontal transport of water vapor over the Northwest Pacific Ocean which dominantly plays an important role in maintaining and accelerating their intensities toward Korea and Japan . These fields demonstrated that two major bands, which imply the rain bands, were locally well-organized and similar to the thick convective cloud features over Japan and the Korean peninsula while WALT and FAYE were approaching away and to. But the values of derived TOVS total precipitable water have shown the underestimate of those of SSM/I total comparatively for two typhoons.