• Title/Summary/Keyword: modulus of rupture (MOR)

Search Result 90, Processing Time 0.025 seconds

Characteristics of Particleboard Fabricated from Waste Wood Particles with Gingko Tree Leaves

  • Park, Sang-Bum;Lee, Sang-Min;Park, Jong-Young
    • Journal of the Korea Furniture Society
    • /
    • v.18 no.2
    • /
    • pp.106-110
    • /
    • 2007
  • This study was performed to find potentialities of the leaves of gingko tree (Gingko biloba L.) as a raw material for particleboard (PB) manufacturing. Various amounts of the leaves were mixed with wasted wood particles to manufacture PB. Physical and mechanical properties, such as density, internal bond (IB) strength, and modulus of rupture (MOR) of manufactured PB were not much different from those of the control board. Formaldehyde emission values decreased with increasing the amount of leaves. Especially, the formaldehyde emission of PB made with 5 percent of leaves was decreased to 1.31 mg/l, which is about 36% lower emission than that of the control. From these results, the leaves of gingko tree may be considered as an additive of lowering formaldehyde emission in a functional PB manufacturing process.

  • PDF

Premature Failure Prevention design of Three-way Catalyst Substrate using DOE (실험계획법을 이용한 삼원촉매담체의 조기 파손 예방 설계)

  • Lee, Dong-Woo;Cho, Seok-Swoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.7
    • /
    • pp.101-108
    • /
    • 2010
  • Domestic three-way catalyst satisfies exhaust gas conversion efficiency or pressure drop etc. but doesn't satisfy thermal durability. Thermal stress analysis for three-way catalyst was performed based on experimental temperature distribution. Thermal safety of three-way catalyst was estimated by safety factor. Aspect ratio variable had the most significant effect on thermal stress. Thickness variable had the least significant effect on thermal stress. Optimal conditions for premature failure prevention of three-way catalyst were as follows : (1) aspect ratio of three-way catalyst : 0.6:1 (2) 2.84mm thick (3) silicon nitride. The safety of Taguchi-optimized three-way catalyst were 4.7 times higher than that of existent three-way catalyst.

Bending Strength Properties of glulam made from small diameter logs. (소경재를 이용한 통직집성재의 휨강도 특성)

  • 박준철;홍순일
    • Journal of the Korea Furniture Society
    • /
    • v.13 no.2
    • /
    • pp.11-18
    • /
    • 2002
  • This study was carried out to investigate the strength and technical feasibility of glulam from small diameter Pinus densiflora and Larix kaempferi. Small diameter logs are currently not used in structural laminated beam construction, but it is suggested that its properties may be feasible for this purpose. The glulam combinations were designed with high grade laminae located at outer laminations (face) and low grade laminae located at center laminations. Important problems of finger jointed glulam as a structural beam are the small modulus of rupture (MOR). One solution for this problem Mi to use veneer and solid wood as the face laminae. The MOE values were predicted for each beam from laminae. The results showed that actual beam MOE values exceeded slightly the predicted values. Based on the evaluation and analysis of Pinus and Larix glulam, the maximum load of Larix kaempferi glulam indicated large values. The bending properties of A and E types glulam were superior to others. It is suggested that this small diameter log can be a candidate for structural glulam construction, providing the proper combinations of face laminae.

  • PDF

Effect of Panel Density and Resin Content on Properties of Medium Density Fiberboard

  • Hong, Min-Kug;Lubis, Muhammad Adly Rahandi;Park, Byung-Dae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.4
    • /
    • pp.444-455
    • /
    • 2017
  • This study was conducted to evaluate the effect of panel density and resin content on properties of medium density fiberboard (MDF) to obtain some insights on MDF properties as a function of panel density and resin content. MDF panels with different panel densities such as 650, 700, 750 and $800kg/m^3$ were manufactured by adjusting the amount of wood fibers in the mat forming. MDF panels were also fabricated by spraying 8, 10, 12, and 14% of urea-formaldehyde (UF) resins onto wood fibers in a drum-type mechanical blender to fabricate MDF panels with a target density of $650kg/m^3$. As the panel density and resin content increased, the internal bonding (IB) strength of MDF panel consistently increased. Modulus of rupture (MOR), modulus of elasticity (MOE) and screw withdrawal resistance (SWR) had a similar trend to the IB strength. In physical properties, thickness swelling (TS) and water absorption (WA) decreased with an increase in both panel density and resin content. In addition, the formaldehyde emission (FE) which increased as the panel density and resin content became greater. In overall, the panel density of MDF had more significant effect than the resin content in all properties of MDF panels, indicating that it was better to adjust the panel density rather than the resin content for MDF manufacture.

Experimental Estimation of Thermal Durability in Ceramic Catalyst Supports for Passenger Car (승용차용 세라믹 촉매 담체의 열적 내구성의 실험적 평가)

  • Baek, Seok-Heum;Kim, Sung-Yong;Seung, Sam-Sun;Yang, Hyup;Joo, Won-Sik;Cho, Seok-Swoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.12
    • /
    • pp.1157-1164
    • /
    • 2007
  • Ceramic honeycomb structures have performed successfully as catalyst supports for meeting hydrocarbon, carbon monoxide and nitrous emissions standards for gasoline-powered vehicles. Three-way catalyst converter has to withstand high temperature and thermal stress due to pressure fluctuations and vibrations. Thermal stress constitutes a major portion of the total stress which the ceramic catalyst support experiences in service. In this study, temperature distribution was measured at ceramic catalyst supports. Thermal durability was evaluated by power series dynamic fatigue damage model. Radial temperature gradient was higher than axial temperature gradient. Thermal stresses depended on direction of elastic modulus. Axial stresses are higher than tangential stresses. Tangential and axial stresses remained below thermal fatigue threshold in all engine operation ranges.

Properties of Wood-Based Board Prepared with Bed-Logs Decayed by Oak Mushroom(Lentinus edodes) (표고 폐골목으로 제조한 목질보드의 성질)

  • Choi, Yong-Soon;Hwang, Won-Jung;Han, Tae-Hyung;Kim, Nam-Hun;Kwon, Jin-Heon
    • Journal of Forest and Environmental Science
    • /
    • v.14 no.1
    • /
    • pp.138-144
    • /
    • 1998
  • To provide further information for reutilization of the bed-logs decayed by oak mushroom(Lentinus edodes), the properties of wood-based board prepared with mixed materials of normal wood and bed-logs were examined. Wood fibers in bed-logs showed different morphology from normal wood fibers, that is, shorter length and rough surface. Thickness swelling increased with increasing mixing ratio of bed-log. On the other hand, modulus of rupture(MOR) in bending strength decreased. In products, the visual surface of board prepared from higher mixing rate of bed-log chips was smooth. Consquently, it is considered that the optimum mixing rate of bed-log to normal wood is the range of 25-50% and the bed-log can be used for raw material of board instead of normal wood.

  • PDF

Development of Pitch Pine Glued Laminated Timber for Structural Use -Improvement of Bending Capacity of Pitch Pine Glulam by Using Domestic Larch Laminars- (리기다소나무의 구조용 집성재 이용기술 개발 -낙엽송 층재와의 혼합 구성을 통한 집성재의 휨성능 향상-)

  • Kim, Kwang-Mo;Shim, Kug-Bo;Park, Joo-Saeng;Kim, Wun-Sub;Lim, Jin-Ah;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.6
    • /
    • pp.13-22
    • /
    • 2007
  • This study was carried out to scrutinize possibility of manufacturing pitch pine (Pinus rigida) glued laminated timber in order to add values of pitch pine trees. Also, it was investigated to improve bending performance of pitch pine glulam. Pitch pine was imported as one of major plantation species in Korean peninsula. Machine stress rated grades of pitch pine lumber mostly ranged between E7 and E9. which grades were more or less inferior to producing high quality glulam. However, the adhesive properties between pitch pine and pitch pine, and between pitch pine and Japanese larch (Larix kaempferi Carr.), such as shear bond strength, wood failure rate and de-lamination rate of bonded layer submerged in cold and boiling water, were higher than Korean Standard criteria. These properties are essential for manufacturing glulam with single species or multiple species. The modulus of rupture (MOR) of pitch pine glulam exceeded the criterion of Korean Standard for glulam strength grade but modulus of elasticity (MOE) was lower than the criterion. On the other hand, the bending performances (MOR and MOE) were improved 20 percent by mixing with Japanese larch laminar. It is effective to arrange higher quality Japanese larch laminar at the outer layer of glulam for improving bending performances. In conclusion, it is possible to use low quality pitch pine as laminar of structural glulam for adding values of pitch pine.

Effect of Bonding on Bending and Shear Strength of COMPLY Composed of Fire Retardant Treated Particleboard (내화처리(耐火處理) 파티클보오드의 COMPLY접착(接着)이 휨강도(強度)와 전단강도(剪斷強度)에 미치는 영향(影響))

  • Lee, Phil Woo;Kwon, Jin Heon
    • Journal of Korean Society of Forest Science
    • /
    • v.64 no.1
    • /
    • pp.26-32
    • /
    • 1984
  • This research was conducted to examine the effect of bonding on the bending and shear strength of COMPLY-board when used with meranti face veneer and fire retardant treated particle-board core. For ammonium sulfate, modulus of rupture (MOR) of COMPLY-board increased with increasing chemical concentration up to 10 percent and then decreased after that concentration. However, Minalith showed reverse effect to the result for ammonium sulfate. Modulus of elasticity (MOE) of COMPLY-hoard decreased with increasing chemical concentration and its differences were not significant between concentration. Shear strength was shown better when treated with ammonium sulfate than with Minalith. Wood failure of COMPLY increased with increasing chemical concentration up to 15 percent and then decreased after that concentration. The products of parallel and cross veneer laminated were better than those of COMPLY composed of fire retardant treated particle-board core. Non-treated particle-board was the least in strength. MOE of fire retardant treated COMPLY increased by 136 percent and its MOE by 170 percent as compared with non treated particle-board.

  • PDF

Effect of Combining Wood Particles and Wire Net on the Physical Properties of Board (목재(木材)파티클과 철강결체(鐵鋼結締)가 보오드의 물리적(物理的) 성질(性質)에 미치는 영향(影響))

  • Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.3-26
    • /
    • 1985
  • The object of this study was to investigate the effects on physical and mechanical properties of wood particle and sawdust board combined with wire net. Conventional forming, press-lam, and veneer comply boards combining one to four wire net sheets were made from wood particle and sawdust with different spacings (8, 10, 12, and 18 Mok) and different wire diameters (0.35, 0.50, and 0.80mm) composing wire net. They were compared and analyzed statistically with specific gravity, thickness swelling, length swelling, bending properties (modulus of rupture, modulus of elasticity, work to proportional limit, and total work), internal bonding strength, and screw holding strength between wood particle and sawdust boards. The results obtained at this study as cording to the discussions might be concluded as follows; 1. In specific gravity, both particle and sawdust boards by press-lam method were higher than by conventional forming and veneer comply method, and the boards containing more wire net sheets also showed higher value. But the wire net spacings(Mok) had no influence on specific gravity. In general, particle board showed higher specific gravity than sawdust board. Veneer comply board showed lowest specific gravity values. 2. Both particle and sawdust boards by press-lam method was slightly lower than by conventional forming and veneer comply method in thickness swelling. The sawdust board containing 8, 12. and 18 Mok wire net showed lower thickness swelling than the corresponding particle board, but both sawdust and particle boards containing the T8 and 10 Mok wire net showed higher and similar thickness swelling. 3. Both particle and sawdust boards containing wire net showed no difference in MOR and MOE of bending. Comply board was the highest and particle board showed slightly higher than sawdust board in MOR and MOE values. 4. In work to proportional limit and total work in bending, both particle and sawdust boards containing thicker wire diameter and more wire net sheets showed higher value. From these facts, it is conceivable that boards with thicker wire diameter and more wire net sheets show increasing resistance against external force. But there was no significant difference between particle and sawdust borads. 5. In resistance against delamination (internal bonding strength), both sawdust and particle boards containing wire net showed lower value than control, and also showed decreasing tendency with more number of wire net sheet composed. Particle board showed higher resistance against delamination than sawdust board. 6. In screw holding strength, sawdust board containing thicker wire diameter and more wire net sheets showed higher value, but particle board by press-lam method was higher than by conventional forming and veneer comply method. Screw holding strength of particle board was higher than that of sawdust board.

  • PDF

Effect of Stress Induced Phase Transformation on $Al_2 O_3$ Matrix Dispersed with $ZrO_2-Y_2O_3$ ($Y_2O_3-ZrO_2$$Al_2 O_3$ 매트릭스에 분산시 응력 유기 상변태의 효과)

  • Lee, Tae-Keun;Lim, Eung-Keuk;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.1
    • /
    • pp.11-18
    • /
    • 1985
  • The effect of stress induced phase transformation on $Al_2 O_3$ matrix dispersed with $ZrO_2-Y_2O_3$ has been studied. In order to determinate the mechanical properties three $Al_2O_3-ZrO_2$ composite series containing 1, 3 and 5 mole% $Y_2O_3$ were prepared. The starting materials were $Al_2O_3$ and $ZrO_2-Y_2O_3$ which was prepared from the aqueous solution of high purity $YCl_3$.$6H_2O$ and $ZrOCl_2$.$8H_2O$. Powder mixtures of $Al_2O_3-ZrO_2$ containing $Y_2O_3$ have been prepared by ball-milling with methanol and the samples were formed by isostatic press and sintered at 150$0^{\circ}C$ for 2hrs. After sintering. the specimens were polished for mechanical determination. The relative density of sintered specimens were also measured. It was found that the addition of 1, 3mole% to {{{{ { ZrO}_{2 } }} allowed full retention of the tetragonal phase in $Al_2O_3-ZrO_2$ but partially stabilized zirconia (PSZ) was produced by additions of 5 mole% $Y_2O_3$.The critical stress-intensity factor KIc of $A_2O_3-ZrO_2$ (containing 1 mole% $Y_2O_3$) composite materials increased with increasing $ZrO_2$ content, The maximum value of KIC=7Mn/$m^3$/2 at 20 mole% $ZrO_2$ exhibited about twice that of the $Al_2 O_3$ The modulus of rupture exhibited a trend similiar to KIC The maximum value of MOR was 580MN/m2. As the amount of Y2O3 increase it was observed that the maximum of KIC and MOR decreased : Additions of 3 mole% $Al_2O_3$ $Y_2O_3$ allowed the maximum of KIC 6MN/$m^3$/2 MOR 540MN/$m^2$ at 15 mole% $ZrO_2$ additions of 5 mole% $Y_2O_3$ allowed the maximum of KIC 5MN/$m^3$/2 MOR 410MN/$m^2$ at 10 mole% $ZrO_2$.

  • PDF