• Title/Summary/Keyword: modular right ideals

Search Result 2, Processing Time 0.018 seconds

PROPERTIES ON TYPES OF PRIMITIVE NEAR-RINGS

  • Cho, Yong-Uk
    • Communications of the Korean Mathematical Society
    • /
    • v.19 no.4
    • /
    • pp.601-618
    • /
    • 2004
  • Throughout this paper, we will consider that R is a near-ring and G an R-group. We initiate the study of monogenic, strongly monogenic R-groups, 3 types of nonzero R-groups and their basic properties. At first, we investigate some properties of D.G. (R, S)-groups, faithful R-groups, monogenic R-groups, simple and R-simple R-groups. Next, we introduce modular right ideals, t-modular right ideals and 3 types of primitive near-rings. The purpose of this paper is to investigate some properties of primitive types near-rings and their characterizations.

Two More Radicals for Right Near-Rings: The Right Jacobson Radicals of Type-1 and 2

  • Rao, Ravi Srinivasa;Prasad, K. Siva
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.4
    • /
    • pp.603-613
    • /
    • 2006
  • Near-rings considered are right near-rings and R is a near-ring. $J_0^r(R)$, the right Jacobson radical of R of type-0, was introduced and studied by the present authors. In this paper $J_1^r(R)$ and $J_2^r(R)$, the right Jacobson radicals of R of type-1 and type-2 are introduced. It is proved that both $J_1^r$ and $J_2^r$ are radicals for near-rings and $J_0^r(R){\subseteq}J_1^r(R){\subseteq}J_2^r(R)$. Unlike the left Jacobson radical classes, the right Jacobson radical class of type-2 contains $M_0(G)$ for many of the finite groups G. Depending on the structure of G, $M_0(G)$ belongs to different right Jacobson radical classes of near-rings. Also unlike left Jacobson-type radicals, the constant part of R is contained in every right 1-modular (2-modular) right ideal of R. For any family of near-rings $R_i$, $i{\in}I$, $J_{\nu}^r({\oplus}_{i{\in}I}R_i)={\oplus}_{i{\in}I}J_{\nu}^r(R_i)$, ${\nu}{\in}\{1,2\}$. Moreover, under certain conditions, for an invariant subnear-ring S of a d.g. near-ring R it is shown that $J_2^r(S)=S{\cap}J_2^r(R)$.

  • PDF