• Title/Summary/Keyword: modified section increment method

Search Result 2, Processing Time 0.021 seconds

PID Control Method with Modified Integral Parameter (변형된 적분 파라미터를 가진 PID 제어방식)

  • 엄기환;강성호;이정훈
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.6
    • /
    • pp.11-16
    • /
    • 2004
  • The integral term of PID controller have the advantage of reduced steady state error and the disadvantage of accumulated errors. We proposed a method that maintains its advantage and improvs the disadvantage in transient response. The proposed PID control method with modified integral parameter accumulates errors in increment section and ignores errors in decrement section. Therefore, the proposed PID control method decreases overshoot, and makes settling time faster than conventional PID control method.

Advaced analysis and optimal design of steel arch bridges (강아치교의 고등해석과 최적설계)

  • Choi, Se Hyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.1 s.74
    • /
    • pp.13-21
    • /
    • 2005
  • Advanced analysis and optimal design of steel arch bridges is presented. In the design method using an advanced analysis, separate member capacity checks after analysis are not required because the stability and strength of the structural system and its component members can be rigorously treated in the analysis. The geometric nonlinearity is considered by using the stability function. The Column Research Council tangent modulus is used to account for gradual yielding due to residual stresses. A parabolic function is used to represent the transition from elastic to zero stiffness associated with a developing hinge. An optimization technique used is a modified section increment method. The member with the largest unit value evaluated by AASHTO-LRFD interaction equation is replaced one by one with an adjacent larger member selected in the database. The objective function is taken as the weight of the steel arch bridge and the constraint functions account for load-carrying capacities and deflection requirements. Member sizes determined by the proposed method are compared with those given by other approaches.