• Title/Summary/Keyword: modified probabilistic neural network(MPNN)

Search Result 2, Processing Time 0.013 seconds

Structural Vibration Control Technique using Modified Probabilistic Neural Network

  • Chang, Seong-Kyu;Kim, Doo-Kie
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.6
    • /
    • pp.667-673
    • /
    • 2010
  • Recently, structures are becoming longer and higher because of the developments of new materials and construction techniques. However, such modern structures are more susceptible to excessive structural vibrations which cause deterioration in serviceability and structural safety. A modified probabilistic neural network(MPNN) approach is proposed to reduce the structural vibration. In this study, the global probability density function(PDF) of MPNN is reflected by summing the heterogeneous local PDFs automatically determined in the individual standard deviation of each variable. The proposed algorithm is applied for the vibration control of a three-story shear building model under Northridge earthquake. When the control results of the MPNN are compared with those of conventional PNN to verify the control performance, the MPNN controller proves to be more effective than PNN methods in decreasing the structural responses.

Modified Probabilistic Neural Network of Heterogeneous Probabilistic Density Functions for the Estimation of Concrete Strength

  • Kim, Doo-Kie;Kim, Hee-Joong;Chang, Sang-Kil;Chang, Seong-Kyu
    • International Journal of Concrete Structures and Materials
    • /
    • v.19 no.1E
    • /
    • pp.11-16
    • /
    • 2007
  • Recently, probabilistic neural network (PNN) has been proposed to predict the compressive strength of concrete for the known effect of improvement on PNN by the iteration method. However, an empirical method has been incorporated in the PNN technique to specify its smoothing parameter, which causes significant uncertainty in predicting the compressive strength of concrete. In this study, a modified probabilistic neural network (MPNN) approach is hence proposed. The global probability density function (PDF) of variables is reflected by summing the heterogeneous local PDFs which are automatically determined by the individual standard deviation of each variable. The proposed MPNN is applied to predict the compressive strength of concrete using actual test data from a concrete company. The estimated results of MPNN are compared with those of the conventional PNN. MPNN showed better results than the conventional PNN in predicting the compressive strength of concrete and provided promising results for the probabilistic approach to predict the concrete strength by using the individual standard deviation of a variable.