• Title/Summary/Keyword: modified polypropylene

Search Result 142, Processing Time 0.03 seconds

Studies on Composite Filaments from Nanoclay Reinforced Polypropylene

  • Joshi, Mangala;Shaw, M.;Butola, B.S.
    • Fibers and Polymers
    • /
    • v.5 no.1
    • /
    • pp.59-67
    • /
    • 2004
  • The development of high tenacity, high modulus monofilaments from Polypropylene/Clay nanocomposite has been investigated. Pure sodium montmorillonite nanoclay was modified using hexadecyl trimethyl ammonium bromide (HTAB) via an ion exchange reaction. Pure and modified clay were characterized through X-ray diffraction, FTIR and TGA. The modified clay was melt blended with polypropylene (PP) in presence of a swelling agent. Composite filaments from PP/Clay nanocomposite were prepared at different weight percentages of nanoclay and the spinning and drawing conditions were optimized. The filaments were characterized for their mechanical, morphological and thermal properties. The composite PP filaments with modified clay showed improved tensile strength, modulus and reduced elongation at break. The composite filaments with unmodified clay did not show any improvement in tensile strength but the modulus improved. The sharp and narrow X-ray diffraction peaks of PP/nanoclay composite filaments indicate increase in crystallinity in presence of modified clay at small loadings (0.5 %). The improved thermal stability was observed in filaments with modified as well as unmodified clays.

A Study on Improvement Thermalstable of Polypropylene (Polypropylene 섬유의 내열성 증진에 관한 연구)

  • Lee, Eun Woo;Cho, In Sul;Yeo, Chang Yeall;Seo, Bo Young
    • Textile Coloration and Finishing
    • /
    • v.9 no.5
    • /
    • pp.82-87
    • /
    • 1997
  • Modified polypropylene was made of melt blending using thermostable-filler and polypropylene polymers. Modified PP were characterized for the purpose of improving a thermal-property of PP polymer with the composition of 5wt %, 10wt % of thermostable-filler. The structure and thermal-property were determined from IR, DSC, TGA, and SEM instruments. From the results of this study, it found the following facts. Firstly, it was found that the modified PP was mixed with PP and thermostable-filler qualitativly. Secondaty, thermal property of modified PP was improved steadily according to increase of ratio of thermostable-filler.

  • PDF

Study on fracture behavior of polypropylene fiber reinforced concrete with bending beam test and digital speckle method

  • Cao, Peng;Feng, Decheng;Zhou, Changjun;Zuo, Wenxin
    • Computers and Concrete
    • /
    • v.14 no.5
    • /
    • pp.527-546
    • /
    • 2014
  • Portland cement concrete, which has higher strength and stiffness than asphalt concrete, has been widely applied on pavements. However, the brittle fracture characteristic of cement concrete restricts its application in highway pavement construction. Since the polypropylene fiber can improve the fracture toughness of cement concrete, Polypropylene Fiber-Reinforced Concrete (PFRC) is attracting more and more attention in civil engineering. In order to study the effect of polypropylene fiber on the generation and evolution process of the local deformation band in concrete, a series of three-point bending tests were performed using the new technology of the digital speckle correlation method for FRC notched beams with different volumetric contents of polypropylene fiber. The modified Double-K model was utilized for the first time to calculate the stress intensity factors of instability and crack initiation of fiber-reinforced concrete beams. The results indicate that the polypropylene fiber can enhance the fracture toughness. Based on the modified Double-K fracture theory, the maximum fracture energy of concrete with 3.2% fiber (in volume) is 47 times higher than the plain concrete. No effort of fiber content on the strength of the concrete was found. Meanwhile to balance the strength and resistant fracture toughness, concrete with 1.6% fiber is recommended to be applied in pavement construction.

Rheological Characterization of Polypropylene/Layered Silicate Nanocomposites Using Integral Constitutive Equations (적분형 구성방정식을 이용한 폴리프로필렌/층상 실리케이트 나노복합재료의 유변학적 특성 분석)

  • Lee, Seung-Hwan;Youn, Jae-Ryoun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.137-140
    • /
    • 2005
  • Exfoliated nanocomposites of polypropylene/layered silicate were prepared by a melt compounding process using maleic anhydride modified polypropylene (PP-g-MAH) and organoclay. It was found that polypropylene/layered silicate nanocomposites exhibited remarkable reinforcement compared with the pure polypropylene or conventional composite filled with agglomerated organoclay. The polypropylene /layered silicate nanocomposites showed stronger and earlier shear thinning behaviors and outstanding strain hardening behavior than pure polypropylene or other conventional composites in shear and uniaxial elongational flows, respectively. We simulated rheological modeling for the pure polymer matrix and polypropylene/layered silicate nanocomposite in shear and elongational flows using K-BKZ integral constitutive equation. The two types of K-BKZequations have been examined to describe experimental results of shear and uniaxial elongational viscosities of pure polypropylene and polypropylene/layered silicate nanocomposite.

  • PDF

Surface Modified Glass-Fiber Effect on the Mechanical Properties of Glass-Fiber Reinforced Polypropylene Composites

  • Park, Sanghoo;Kim, Su-Jong;Shin, Eun Seob;Lee, Seung Jun;Kang, Beom Mo;Park, Kyu-Hwan;Hong, Seheum;Hwang, Seok-Ho
    • Elastomers and Composites
    • /
    • v.54 no.3
    • /
    • pp.182-187
    • /
    • 2019
  • To improve the mechanical properties of glass-fiber-reinforced polypropylene (PP) composites through interfacial adhesion control between the PP matrix and glass fiber, the surface of the glass fiber was modified with PP-graft-maleic anhydride (MAPP). Surface modification of the glass fiber was carried out through the well-known hydrolysis-condensation reaction using 3-aminopropyltriethoxy silane, and then subsequently treated with MAPP to produce the desired MAPP-anchored glass fiber (MAPP-a-GF). The glass-fiber-reinforced PP composites were prepared by typical melt-mixing technique. The effect of chemical modification of the glass fiber surface on the mechanical properties of composites was investigated. The resulting mechanical and morphological properties showed improved interfacial adhesion between the MAPP-a-GF and PP matrix in the composites.

Microbe Adhesion and Organic Removal from Synthetic Wastewater Treatment using Polypropylene Media Modified by Ion-Assisted Reactions (이온 보조 반응에 의하여 활성화된 폴리프로필렌 담체를 이용만 합성폐수 처리시 미생물 부착 및 유기물의 제거)

  • Seon, Yong-Ho;Han, Sung;Koh, Seok-Keun
    • KSBB Journal
    • /
    • v.17 no.3
    • /
    • pp.235-240
    • /
    • 2002
  • The surface of polypropylene was modified by 1 keV $Ar^+$ ion beam in an $O_2$ environment in order to enhance wettability. Contact angle of deionized water on modified polypropylene was reduced from $78^{\circ}$to $22^{\circ}$. The enhanced wettability is originated from newly formed functional groups such as ether, carbonyl, and carbonyl groups. During immersion in deionized water, the enhanced wettability has remained nearly same. After washing in water, the hydrophilic functional groups on the polymer surface have been very stable. The modified polypropylene was adopted as bio-film media to remove organics in synthetic wastewater. Microbe adhesion on the polypropylene surface was improved due to the newly formed hydrophilic groups.

Evaluation of Fire Resistance Performance of Polymer Modified Cement Mortar Using Polypropylene Fiber (폴리프로필렌 섬유를 혼입한 폴리머 시멘트 모르타르의 내화성능 평가)

  • Jeon, Ki-Soo;Sim, Sang-Rak;Lee, Young-Do
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.2
    • /
    • pp.133-142
    • /
    • 2023
  • In this study, the fire resistance capabilities of polypropylene fiber-reinforced polymer-modified cement mortar were assessed to guarantee the fire resistance fo this materials, commonly employed in the repair of concrete structures. Experimental outcomes revealed that an increased water and polymer content heightened the likelihood of spalling, while longer polypropylene fibers and elevated polymer concentrations proved more effective in mitigating spalling.

POLYPROPYLENE/CLAY NANOCOMPOSITES FOR AUTOMOTIVE APPLICATIONS

  • HONG C. H.;LEE Y. B.;JHO J. Y.;NAM B. U.;HWANG T. W.
    • International Journal of Automotive Technology
    • /
    • v.6 no.6
    • /
    • pp.665-670
    • /
    • 2005
  • Nanocomposites of polypropylene with organically modified clays were compounded on a twin-screw extruder by two-step melt compounding of three components, i.e., polypropylene, maleic anhydride grafted polypropylene (PP-g-MA), and organically modified clay. The effect of PP-g-MA compatibilizers, including PH-200, Epolene-43, Polybond-3002, Polybond-3200, with a wide range of maleic anhydride (MA) content and molecular weight was examined. Morphologies of nanocomposites and their mechanical properties such as stiffness, strength, and impact resistance were investigated. X-ray diffraction patterns showed that the dispersion morphology of clay particles seemed to be determined in the first compounding step and the further dispersion of clays didn't occur in the second compounding step. As the ratio of PP-g-MA to clay increased, the clay particles were dispersed more uniformly in the matrix resin. As the dispersibility of clays was enhanced, the reinforcement effect of the clays increased, however impact resistance decreased.

Effect of two compatibilizers haying comonomer in polypropylene/clay nanocomposites (Comonomer 도입한 상용화제가 Polypropylene/clay 나노복합재료에 미치는 영향)

  • Nam, Byeong-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.2
    • /
    • pp.367-371
    • /
    • 2007
  • Nanocomposites prepared by PP(Polypropylene) based compatibilizers modified with GMA(Glycidyl methacrylate) and HEMA(Hydroxyethyl methacrylate) were used to investigate the clay dispersion and mechanical properties of them. XRD patterns showed the improvement of dispersion through clay intercalation according to the compatibilizers and comonomer. GMA modified polypropylene gave the best mechanical properties of the nanocomposite with respect to the balance of Flexural modulus (FM) and Notched izod impact strength(IS). Compatibilizers with comonoer commonly have higher grafting yield and lower melt flow rate than those of comonomer free. And they enhanced the clay dispersion and mechanical properties of nanocomposites. Optimum ratio of monomer to comonomer for nanocomposites having better mechanical properties is about 1 to 1 ratio.

  • PDF