• Title/Summary/Keyword: modified peat moss

Search Result 3, Processing Time 0.016 seconds

Development of Degradation Agent for Oil Contaminated Soil using Modified Peat Moss and Organic Sludge (개량된 이탄과 유기성 슬러지를 이용한 유류오염토양 분해제 개발)

  • Kim, Soo-Hong;Lee, Chang-Han;Suh, Jung-Ho
    • KSBB Journal
    • /
    • v.25 no.1
    • /
    • pp.103-107
    • /
    • 2010
  • Oil degradation agent was developed with organic sludge and modified peat moss (MPM) to recover oil contaminated soil. Waste sludge discharged from wastewater treatment plant of chemical plant in Ulsan National Industrial Park was used as organic sludge, and MPM was purchased. Organic sludge was adequate to use as growth medium for microorganism, the surface of MPM had porous structure which could enhance the cultivation condition of oil degradation microorganisms. Water contents and TPH variation with time were observed to investigate the degradation capacity of developed degradation agent. Water contents were rapidly decreased with higher contents of MPM, however, in case of TPH, high MPM content decreased the degradation capacity. Therefore, it was recommended that the content of MPM was controlled to below 10% in degradation agent as mixing organic sludge with MPM.

Field Test Assessment of Biological Recovering Agent for treating Oil Contaminated Soil (생물학적 유류오염토양 복원제의 현장 적용성 평가)

  • Kim, Soo-Hong;Song, Seung-Koo;Suh, Jung-Ho
    • KSBB Journal
    • /
    • v.25 no.1
    • /
    • pp.73-78
    • /
    • 2010
  • In this study, recovering agent was produced with organic sludge and modified peat moss (MPM) in pilot plant mixer to recover oil contaminated soil, and field test of it was estimated using landfarming method. Oil contaminated soil recovering agent was thought to contain more microorganisms than raw waste sludge and was no problem to come onto the market because there were not any items of specified wastes. According to the results of TPH variation with time, it was observed the initial degradation velocity of oil with produced recovering agent was rapid up to 50% after 4 days, remarkably. Because the microorganisms in the organic sludge discharged from chemical plant already acclimated with oil, therefore, it could be estimated initial degradation velocity of recovering agent might be rapid. It was concluded that the oil contaminated soil recovering agent produced in this study have high marketability because of its two aspects on recycling of wastes and initial rapid degradation capacity.

Microprogation And Environment Conditions Affecting On Growth Of In Vitro And Ex Vitro Of A. Formosanus Hay

  • Ket, Nguyen-Van;Paek, Kee-Yoeup
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2002.11a
    • /
    • pp.29-30
    • /
    • 2002
  • The goal of this research was to develop the effectiveness of in vitro culture method for A. formosanus and study the environment in vitro conditions affecting on growth. The first series of experiments were examined to investigate the response of three different basal media, MS (Murashige and Skoog, 1962), Knudson (KC; Knudson, 1946) and modified hyponex on growth and multiplication during in vitro culture. Multiple shoot proliferation was induced in shoot tip explants on Hyponex (H3) media supplemented with BA (1 mg1$\^$-1/) or TDZ (1-2 mg1$\^$-1/). Addition of activated charcoal (1%) to the TDZ containing medium promoted rapid shoot tip proliferation (11.1 shoots per explant) but the same medium had an opposite effect resulting in poor proliferation in the nodal explants. However, the regenerated shoots had slow growth rate and failed to elongate. This problem was overcome by transferring the shoot clumps to a hormone free H3 media supplemented with 2% sucrose and 0.5% activated charcoal. Using bioreactor culture for scaling up was also shown the best way for multiple shoot induction and growth of this plant. The second series of experiments was studied to investigate the effect of physical environment factors on growth of in vitro plantlets. The Anoectochilus formosanus plantlets were cultured under different air exchange rate (0.1, 0.9, 1.2h$\^$-1/), without sucrose or supplement 20g.1$\^$-1/ (photoautotrophic or photomixotrophic, respectively), and different photosynthesis photon flux (40, 80, 120 ,${\mu}$mol.m$^2$.s$\^$-1/- PPF). Under non-enrichment CO$_2$ treatment, slow growth was observed in photoautotrophical condition as compared with photomixotrophical condition on shoot height, fresh weigh and dry weight parameters; High air exchange (1.2.h-l) was found to be inadequate for plant growth in photomixotrophical condition. On the contrary, under CO$_2$, enrichment treatment, the plant growth parameters were sharply (visibly) improved on photoautotrophic treatments, especially on the treatment with air exchange rate of 0.9.h-1. The growth of plant in photoautotrophic condition was not inferior compared with photomixotrophic, and the best growth of plantlet was observed in treatment with low air exchange rate (0.9.h-1). Raising the PPF level from 80 to 120${\mu}$mol.m$\^$-2/.s$\^$-1/ decreased the plant height, particularly at 120${\mu}$mol.m$\^$-2/.s$\^$-1/ in photoautotrophic condition, fresh weight and dry weight declined noticeably. At the PPF of 120${\mu}$mol.m$\^$-2/,s$\^$-1/, chlorophyll contents lowed compared to those grown under low PPF but time courses of net photosynthesis rate was decreased noticeably. Light quality mainly affected morphological variables, changes of light quality also positively affected biomass production via changes in leaf area, stem elongation, chlorophyll content. Plant biomass was reduced when A. formosanus were grown under red LEDs in the absence of blue wavelengths compare to plants grown under supplemental blue light or under fluorescent light. Stem elongation was observed under red and blue light in the present experiment. Smaller leaf area has found under blue light than with other lighting treatments. Chlorophyll degradation was more pronounced in red and blue light compared with white light or red plus blue light which consequent affected the photosynthetic capacity of the plant. The third series of experiment were studied to investigate the effect of physical environment factors on growth of ex vitro plants including photosynthesis photon flux (PPF), light quality, growing substrates, electrical conductivity (EC) and humidity conditions. In the present experiments, response of plant on PPF and light quality was similar in vitro plants under photosynthesis photon flux 40${\mu}$mol.m,$\^$-2/.s$\^$-1/ and white light or blue plus red lights were the best growth. Substrates testing results were indicated cocopeat or peat moss were good substrates for A. formosanus growth under the greenhouse conditions. In case of A. formosanus plants, EC is generally maintained in the range 0.7 to 1.5 dS.m-1 was shown best results in growth of this plant. Keeping high humidity over 70% under low radiation enhanced growth rate and mass production.

  • PDF