• Title/Summary/Keyword: modified live virus vaccine

Search Result 8, Processing Time 0.026 seconds

Effect of Modified Live Virus Vaccine aganist Canine Parvovirus Infection (개 파보바이러스 감염에 대한 Modified Live Virus Vaccine의 효과)

  • 한정희;유기일;권혁무;서강문
    • Journal of Veterinary Clinics
    • /
    • v.15 no.1
    • /
    • pp.46-55
    • /
    • 1998
  • This study was performed to verify the effect of modified live virus vaccine against canine parvovirus (CPV) infection. Serum hemagglutination inhibition (Hl) test, histopathological and immunohistochemical techniques and polymerase chain reaction were used. The results were as follows: 1. During the experimental terms after vaccination, serum Hl titer was stable. Geometric mean titer (GMT) after the 1st vaccination was 280. After virulent CPV was challenged, GMT was 1,306. 2. After challenge by virulent CPV, the vaccinated group was not shown clinical signs and gross and histopathological findings. 3. After challenge by virulent CPV, the vaccinated group was not detected viral antigens in the small intestine immunohistochemically. 4. After challenge by violent CPV, the vaccinated group was not shown virus shedding in feces. In conclusions the overall results confirmed that modified live virus vaccine was effective on prevention of canine parvovirus infection.

  • PDF

Effects of the modified live vaccines against Bordetella bronchiseptica and canine parainfluenza virus (개 전염성 기관기관지염에 대한 modified live vaccine의 방어효과)

  • Park, Young-Il;Roh, In-Soon;Han, Jeong-Hee
    • Korean Journal of Veterinary Service
    • /
    • v.31 no.1
    • /
    • pp.57-70
    • /
    • 2008
  • The purpose of this study was to investigate the protective effects of the modified live vaccines against canine Bordetella bronchiseptica (Bb) and canine parainfluenza virus (CPIV) in puppies by nasal administration. A total of 24 puppies were classified as 3 groups consisting of 8, and each one was divided into two subgroups; vaccinated (n=4) and unvaccinated (n=4). Group I, group II and group III were challenged with Bb, CPIV, and Bb+CPIV, respectively. In group I vaccinated puppies (n=4) were experimentally challenged with Bb 2 weeks after vaccination and unvaccinated puppies (n=4) were experimentally challenged with Bb alone. The same methods of the above were applied for group II and group III. We carried out several studies including serum tests, isolation, and histopathological examination. The vaccinated puppies showed higher antibody titers than unvaccinated puppies and the titer sustained during the experimental period. In the isolation test, recovery period was shorter in the vaccinated subgroup than in the other. In clinical signs, the unvaccinated puppies showed the typical signs of tracheobronchitis (coughing, nasal and occular discharge), but another subgroup showed delayed incidence and mild clinical signs. The typical gross lesions and histopathological findings were observed in the unvaccinated puppies. In immunohistochemical findings, the vaccinated puppies showed little intensive in reaction for CPIV antigen than the other. It could be concluded that intranasal vaccination of modified live Bb and CPIV vaccine to puppies is effective to prevent canine infectious tracheobronchitis.

New trends of vaccine development: Recombinant vaccinia viruses (expression vectors) as vaccines (Vaccine개발(開發)의 새로운 동향(動向) : Vaccinia virus를 발견(發見) vector로 이용하는 재조합(再組合) 생(生)vaccine의 작성(作成))

  • Kim, Uh-ho
    • Korean Journal of Veterinary Research
    • /
    • v.29 no.3
    • /
    • pp.407-416
    • /
    • 1989
  • The prospect of live vaccines consisting of genetically modified vaccinia virus expressing foreign genes is exciting, but important issues concerning safety and efficacy need to resolved. Vaccinia virus (VV) is an efficient expression vector with broad host range infectivity and large DNA capacity. This vector has been particularly useful for identifying target antigens for humoral and cell-mediated immunity. The WHO smallpox eradication program, involving the extensive use of VV vaccines, resulted in the late 1970s in the elimination of one of the world's most feared diseases. This achievement is a triumph for preventive medicine and for international collaboration in public health. In 1980, WHO recommended that the routine use of smallpox vaccine should be stopped. Against this background, the prospect of li ve vaccines consisting of genetically modified VV expressing foreign antigens arising from the work of Moss, and Paoletti and their colleagues in 1982 has been greeted with enthusiasm. These investigators have shown that genes coding for immunogenic proteins can be inserted into VV DNA without impairing the ability of the virus to grow in cell culture. Moreover experimental animals infected with VV recombinants containing genes coding for a variety of immunizing proteins have been shown to be protected against challenge infection with the corresponding infectious agent. In this communication, I describe current progress in the construction of a novel plasmid vector that facilitate the insertion and expression of foreign genes in VV as well as the selection of recombinants.

  • PDF

Safety and efficacy of modified-live infectious laryngotracheitis vaccines (닭 전염성 후두기관염 생독백신의 안전성과 효능)

  • Han, Myung-Guk;Lee, O-Soo;Kim, Jea-Hong
    • Korean Journal of Veterinary Research
    • /
    • v.42 no.2
    • /
    • pp.241-251
    • /
    • 2002
  • Modified-live (ML) infectious laryngotracheitis (ILT) vaccines have been widely used as a preventive measure in Korea since the first outbreak of ITL. Recently, it has been observed that chickens vaccinated with the commercially available ML ILT vaccine have sometimes exhibited adverse clinical signs. In this study, we evaluated the quality of the vaccines by comparing titer of each vaccine batch and testing the stability of ILT virus (ILTV) in vaccine diluents and compared the safety and efficacy of vaccines in specific pathogen free (SPF) chickens. The ratio of maximum titer to minimum titer of vaccine produced by most manufacturers was 2 to 15. However, 2 out of 11 manufacturers produced vaccines of which the ratio was 74 to 478. Most vaccines examined were maintained vaccine titers suitable for national regulations within expiry date. However, some vaccines did not keep the titer required for the national regulations. In the test for stability of ILTV in various diluents, ILTV was highly stable in lactose-phosphate-glutamine-gelatin solution, sucrose-phophate-glutamine-albumin solution and some vaccine diluents produced by manufacturers. The safety of ML ILT vaccines was assessed in 10-day-old SPF chicks. Mortality in SPF chicks inoculated intratracheally with one dose of vaccine varied depending on vaccines and some vaccines produced 50-85% mortality. Seven-week-old SPF chickens were vaccinated intraocularly with ML ILT vaccines and then challenged intratracheally with ILT challenge virus 14 days after vaccination. The protection rate was assessed by clinical signs and reisolation of the ILT challenge virus from tracheas taken at day 4 after challenge. There were slight respiratory reactions in some vaccinated chickens after vaccination but these reactions disappeared within 5 days after vaccination. No further clinical signs and death were observed. Protection rate determined by clinical signs and mortality was 100% in all vaccinated groups. However, the challenge virus was isolated from all tracheas of chickens vaccinated with vaccine B or control groups. The challenge virus was also isolated in the trachea of one in five chickens vaccinated with either vaccine F or K, but not in tracheas of chickens vaccinated with other vaccines. In the present study, the stability of vaccine diluents, pathogenicity and protection rate based on reisolation test of the challenge virus were different depending on vaccines produced by eleven manufacturers.

Protection provided by a commercial modified-live porcine reproductive and respiratory syndrome virus (PRRSV) 1 vaccine (PRRSV1-MLV) against a Japanese PRRSV2 field strain

  • Joel Miranda;Salvador Romero;Lidia de Lucas;Fumitoshi Saito;Mar Fenech;Ivan Diaz
    • Journal of Veterinary Science
    • /
    • v.24 no.5
    • /
    • pp.54.1-54.13
    • /
    • 2023
  • Background: Porcine reproductive and respiratory syndrome virus (PRRSV) vaccines do not provide full cross-protection, mainly due to the virus genetic variability. Despite this, vaccines based on modified-live PRRSV (PRRSV-MLV) reduce the disease impact. Objectives: To assess the efficacy of two commercial vaccines-one based on PRRSV1 (PRRSV1-MLV) and another on PRRSV2 (PRRSV2-MLV)-against a Japanese PRRSV2 field strain. Methods: Two groups of three-week-old piglets were vaccinated (G1: PRRSV1-MLV; G2: PRRSV2-MLV) and two were kept as non-vaccinated (INF and CTRL). One month later, G1, G2, and INF were challenged with a PRRSV2 field strain. Results: After the challenge, clinical signs were only observed in INF. Moreover, the highest rectal temperatures and values for the area under the curve (AUC) were observed in INF. Regarding viral detection, both AUC and the proportion of positive samples in blood were higher in INF. In G1, viremic animals never reached 100%. At necropsy (21 d after the challenge), differences for titers among groups were only found in tonsils (G1 < G2 and INF). One animal (belonging to G1) was negative in all tissues. Regarding humoral responses, G1 and G2 seroconverted after vaccination, as detected in the corresponding enzyme-linked immunosorbent assay. Specific neutralizing antibodies (NA) against PRRSV1-MLV were already detected at 14 d after vaccination in G1, showing a significant booster after the challenge, while PRRSV2-MLV NA were detected in G2 at the end of the experiment. Conclusions: Despite genetic differences, PRRSV1-MLV has been demonstrated to confer partial protection against a Japanese PRRSV2 strain, at least as good as PRRSV2-MLV.

Generation of a cold-adapted PRRSV with a nucleotide substitution in the ORF5 and numerous mutations in the hypervariable region of NSP2

  • Do, Van Tan;Dao, Hoai Thu;Hahn, Tae-Wook
    • Journal of Veterinary Science
    • /
    • v.21 no.6
    • /
    • pp.85.1-85.6
    • /
    • 2020
  • A cold-adapted porcine reproductive and respiratory syndrome virus (CA-VR2332) was generated from the modified live virus strain VR2332. CA-VR2332 showed impaired growth when cultured at 37℃ with numerous mutations (S731F, E819D, G975E, and D1014N) in the hypervariable region of the NSP2, in which the mutation S731F might play a vital role in viral replication at 30℃. Conserved amino acid sequences of the GP5 protein suggests that CA-VR2332 is a promising candidate for producing an effective vaccine against PRRSV infection. Further studies on replication and immunogenicity in vivo are required to evaluate the properties of CA-VR2332.

HIV-1 Vaccine Development: Need For New Directions

  • Cho Michael W.
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.78-82
    • /
    • 2000
  • The AIDS epidemic continues unabated in many part of the world. After near two decades, no vaccine is available to combat the spread of this deadly disease. Much of the HIV -1 vaccine effort during the past decade has focused on the viral envelope glycoprotein, largely because it is the only protein that can elicit neutralizing antibodies (Nabs). Eliciting broadly cross-reactive Nabs has been a primary goal. The intrinsic genetic diversity of the viral envelope, however, has been one of the major impediments in vaccine development. We have recently completed a comprehensive study examining whether it is possible to elicit broadly acting Nabs by immunizing monkeys with mixtures of envelope proteins from multiple HIV -1 isolates. We compared the humoral immune responses elicited by vaccination with either single or multiple envelope proteins and evaluated the importance of humoral and non-humoral immune response in protection against a challenge virus with a homologous or heterologous envelope protein. Our results show that (1) Nab is the correlate of sterilizing immunity, (2) Nabs against primary HIV -1 isolates can be elicited by the live vector-prime/protein boost approach, and (3) polyvalent envelope vaccines elicit broader Nab response than monovalent vaccines. Nonetheless, our findings clearly indicate that the increased breadth of Nab response is by and large limited to strains included in the vaccine mixture and does not extend to heterologous non-vaccine strains. Our study strongly demonstrates how difficult it may be to elicit broadly reactive Nabs using envelope proteins and sadly predicts a similar fate for many of the vaccine candidates currently being evaluated in clinical trials. We have started to evaluate other vaccine candidates (e.g. genetically modified envelope proteins) that might elicit broadly reactive Nabs. We are also exploring other vaccine strategies to elicit potent cytotoxic T lymphocyte responses. Preliminary results from some of these experiments will be discussed.

  • PDF

Acute porcine reproductive and respiratory syndrome outbreaks in immunized sow herds: from occurrence to stabilization under whole herd vaccination strategy

  • Moon, Sung Ho;Yoo, Sung J.;Noh, Sang Hyun;Kwon, Taeyong;Lee, Dong Uk;Je, Sang H.;Kim, Myung Hyee;Seo, Sang Won;Lyoo, Young S.
    • Korean Journal of Veterinary Research
    • /
    • v.58 no.2
    • /
    • pp.73-79
    • /
    • 2018
  • Outbreaks of porcine reproductive and respiratory syndrome virus (PRRSV) in vaccinated sow herds from occurrence to stabilization were monitored and analyzed in terms of serology and reproductive performance. Three different conventional pig farms experienced severe reproductive failures with the introduction of a type 1 PRRSV. These farms had adopted mass vaccination of sows using a type 2 PRRSV modified live vaccine (MLV). Therefore, to control the type 1 PRRSV, an alternative vaccination program utilizing both type 1 and type 2 MLV was undertaken. Following whole herd vaccinations with both types of MLV, successful stabilization of PRRS outbreaks was identified based on serological data (no viremia and downward trends in ELISA antibody titers in both sows and suckling piglets) and recovery of reproductive performance. Additionally, through comparison of the reproductive parameters between outbreak and non-outbreak periods, it was identified that PRRSV significantly affected the farrowing rate and the number of suckling piglets per litter at all three pig farms. Comparison of reproductive parameters between periods when the different vaccination strategies were applied revealed that the number of piglets born in total and born dead per litter were significantly increased after the introduction of the type 1 PRRS MLV.