• Title/Summary/Keyword: modified form

Search Result 1,217, Processing Time 0.029 seconds

Numerical Analysis for Hull Cleaning ROV Resistance Performance (선저청소로봇 저항성능 전산해석)

  • Seo, Jang-Hoon;Yoon, Hyun-Sik;Chun, Ho-Hwan;Kim, Su-Hu;Kim, Tae-Hyung;Woo, Jong-Sik;Joo, Young-Sock
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.64-74
    • /
    • 2008
  • The flaw around a ROV (Remotely Operated Vehicle) has been numerically investigated to improve resistance performance by modifying the hull form of the ROV. For the base hull form considered in this study, the form drag rather than the friction drag is dominant to the total drag Subsequently, the surfaces on which the local pressure highly acts have been modified to produce the streamlined-shape. Based on the surface modification, seven different hull forms have been chosen as candidates for drag reduction. Among the candidates, the semi-sphericalized housing and the streamlined-bow achieved greatest drag reduction comparing with the others. Consequently, the hull form combined with the semi-sphericalized housing and the streamlined-bow gave approximately 17% drag reduction at the design velocity of 3 knots.

Flexural behavior and a modified prediction of deflection of concrete beam reinforced with a ribbed GFRP bars

  • Ju, Minkwan;Park, Cheolwoo;Kim, Yongjae
    • Computers and Concrete
    • /
    • v.19 no.6
    • /
    • pp.631-639
    • /
    • 2017
  • This study experimentally investigated the flexural capacity of a concrete beam reinforced with a newly developed GFRP bar that overcomes the lower modulus of elasticity and bond strength compared to a steel bar. The GFRP bar was fabricated by thermosetting a braided pultrusion process to form the outer fiber ribs. The mechanical properties of the modulus of elasticity and bond strength were enhanced compared with those of commercial GFRP bars. In the four-point bending test results, all specimens failed according to the intended failure mode due to flexural design in compliance with ACI 440.1R-15. The effects of the reinforcement ratio and concrete compressive strength were investigated. Equations from the code were used to predict the deflection, and they overestimated the deflection compared with the experimental results. A modified model using two coefficients was developed to provide much better predictive ability, even when the effective moment of inertia was less than the theoretical $I_{cr}$. The deformability of the test beams satisfied the specified value of 4.0 in compliance with CSA S6-10. A modified effective moment of inertia with two correction factors was proposed and it could provide much better predictability in prediction even at the effective moment of inertia less than that of theoretical cracked moment of inertia.

A Parabolic Model to the Modified Mild Slope Equation (수정 완경사 파랑식에 대한 포물형 근사식 모형)

  • Seo, Seung-Nam;Lee, Jong-Chan
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.4
    • /
    • pp.360-371
    • /
    • 2006
  • In order to calculate waves propagating into the shallow water region, a generalized parabolic approximate model is presented. The model is derived from the modified mild slope equation and includes all the existing parabolic models presented in the paper. Numerical results are presented in comparison to laboratory data of Berkhoff et al.(1982). The existing parabolic model shows almost same accuracy against the modified parabolic model and both results of models stand in closer agreement to the laboratory data. Therefore the existing parabolic model based on mild slope equation is a useful tool to compute shallow water waves which turns out to be more fast and stable in computational aspect.

Leachability of Zinc Borate-Modified Oriented Strandboard (OSB)

  • Lee, Sun-Young;Wu, Qinglin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.5
    • /
    • pp.46-57
    • /
    • 2007
  • The leachability of boron in zinc borate (ZB)-modified oriented strandboard (OSB) from southern wood species was investigated in this study. The leaching experiments were conducted by exposing edge-sealed OSB samples under running water at $31^{\circ}C$ for 8, 24, 72, and 216 h. The results from leached samples were compared with those from the unleached controls. Boron leaching of the modified OSB occurred upon the initial water exposure, and the leaching rate decreased as the leaching time increased. Initial boric acid equivalent (BAE) level, wood species, and sample thickness swelling significantly influenced the leachability. There was no consistent effect of polyethylene glycol (PEG) on zinc borate leaching. The glue-line washing within OSB due to thickness swelling of the test samples under water and decomposition of the borate to form water-soluble boric acid were thought to be two possible causes for the observed leaching. The relationship between assayed BAE and leaching time followed a decaying exponential function for zinc borate treated OSB. From the boron/zinc ratio after each leaching period, boron element in ZB was more or less leachable. The material constant of the regression models allowed comparing the leachability of the modified OSB for various wood species. An unified leaching method for treated wood composite materials is needed.

A NUMERICAL METHOD FOR THE MODIFIED VECTOR-VALUED ALLEN-CAHN PHASE-FIELD MODEL AND ITS APPLICATION TO MULTIPHASE IMAGE SEGMENTATION

  • Lee, Hyun Geun;Lee, June-Yub
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.1
    • /
    • pp.27-41
    • /
    • 2014
  • In this paper, we present an efficient numerical method for multiphase image segmentation using a multiphase-field model. The method combines the vector-valued Allen-Cahn phase-field equation with initial data fitting terms containing prescribed interface width and fidelity constants. An efficient numerical solution is achieved using the recently developed hybrid operator splitting method for the vector-valued Allen-Cahn phase-field equation. We split the modified vector-valued Allen-Cahn equation into a nonlinear equation and a linear diffusion equation with a source term. The linear diffusion equation is discretized using an implicit scheme and the resulting implicit discrete system of equations is solved by a multigrid method. The nonlinear equation is solved semi-analytically using a closed-form solution. And by treating the source term of the linear diffusion equation explicitly, we solve the modified vector-valued Allen-Cahn equation in a decoupled way. By decoupling the governing equation, we can speed up the segmentation process with multiple phases. We perform some characteristic numerical experiments for multiphase image segmentation.

Optimum design of prestressed concrete beams by a modified grid search method

  • Cagatay, Ismail H.;Dundar, Cengiz;Aksogan, Orhan
    • Structural Engineering and Mechanics
    • /
    • v.15 no.1
    • /
    • pp.39-52
    • /
    • 2003
  • A computer program has been developed for the optimum design of prestressed concrete beams under flexure. Optimum values of prestressing force, tendon configuration, and cross-sectional dimensions are determined subject to constraints on the design variables and stresses. 28 constraints have been used including flexural stresses, cover requirement, the aspect ratios for top and bottom flanges and web part of a beam and ultimate moment. The objective function contains cost of concrete, prestressing force and formwork. Using this function, it is possible to obtain minimum cost design, minimum weight or cross-sectional area of concrete design and minimum prestressing force design. Besides the idealized I-shaped cross-section, which is widely used in literature, a general I-shaped cross-section with eight geometrical design variables are used here. Four examples, one of which is available in the literature and the others are modified form of it, have been solved for minimum cost and minimum cross-sectional area designs and the results are compared. The computer program, which employs modified grid search optimization method, can assist a designer in producing efficient designs rapidly and easily. Considerable savings in computational work are thus made possible.

Modified RHKF Filter for Improved DR/GPS Navigation against Uncertain Model Dynamics

  • Cho, Seong-Yun;Lee, Hyung-Keun
    • ETRI Journal
    • /
    • v.34 no.3
    • /
    • pp.379-387
    • /
    • 2012
  • In this paper, an error compensation technique for a dead reckoning (DR) system using a magnetic compass module is proposed. The magnetic compass-based azimuth may include a bias that varies with location due to the surrounding magnetic sources. In this paper, the DR system is integrated with a Global Positioning System (GPS) receiver using a finite impulse response (FIR) filter to reduce errors. This filter can estimate the varying bias more effectively than the conventional Kalman filter, which has an infinite impulse response structure. Moreover, the conventional receding horizon Kalman FIR (RHKF) filter is modified for application in nonlinear systems and to compensate the drawbacks of the RHKF filter. The modified RHKF filter is a novel RHKF filter scheme for nonlinear dynamics. The inverse covariance form of the linearized Kalman filter is combined with a receding horizon FIR strategy. This filter is then combined with an extended Kalman filter to enhance the convergence characteristics of the FIR filter. Also, the receding interval is extended to reduce the computational burden. The performance of the proposed DR/GPS integrated system using the modified RHKF filter is evaluated through simulation.

Dynamic instability analysis for S-FGM plates embedded in Pasternak elastic medium using the modified couple stress theory

  • Park, Weon-Tae;Han, Sung-Cheon;Jung, Woo-Young;Lee, Won-Hong
    • Steel and Composite Structures
    • /
    • v.22 no.6
    • /
    • pp.1239-1259
    • /
    • 2016
  • The modified couple stress-based third-order shear deformation theory is presented for sigmoid functionally graded materials (S-FGM) plates. The advantage of the modified couple stress theory is the involvement of only one material length scale parameter which causes to create symmetric couple stress tensor and to use it more easily. Analytical solution for dynamic instability analysis of S-FGM plates on elastic medium is investigated. The present models contain two-constituent material variation through the plate thickness. The equations of motion are derived from Hamilton's energy principle. The governing equations are then written in the form of Mathieu-Hill equations and then Bolotin's method is employed to determine the instability regions. The boundaries of the instability regions are represented in the dynamic load and excitation frequency plane. It is assumed that the elastic medium is modeled as Pasternak elastic medium. The effects of static and dynamic load, power law index, material length scale parameter, side-to-thickness ratio, and elastic medium parameter have been discussed. The width of the instability region for an S-FGM plate decreases with the decrease of material length scale parameter. The study is relevant to the dynamic simulation of micro structures embedded in elastic medium subjected to intense compression and tension.

Removal Properties of Aqueous Ammonium ion with Surface Modified Magnetic Zeolite Adsorbents (자성으로 표면개질된 제올라이트 흡착제를 이용한 수중 암모늄 이온 제거 특성)

  • Jung, Yong-Jun
    • Journal of Wetlands Research
    • /
    • v.21 no.2
    • /
    • pp.152-156
    • /
    • 2019
  • The removal property of magnetic zeolite for the adsorption of aqueous ammonium ion was examined in this work. The surface modified magnetic zeolite was produced by hydrothermal synthesis. The complex of zeolite and $Fe_3O_4$ was established by the observation of SEM and XRD analysis and less than 12.6% of $Fe_3O_4$ content in magnetic zeolite was observed in the form of $Fe_3O_4$ particles. The optimum pH of adsorption was shown around 8 and the maximum adsorption linearly decreased with the increase of $Fe_3O_4$ content. The adsorption isotherm for aqueous ammonium ion was approximated by Langmuir equation. The developed surface modified magnetic zeolite adsorbent was recommended to control the nitrogen pollution for wetland environment system.

A case report of chronic Bartholin's cyst that improved with modified Sosiho-tang based on Shanghanlun (『상한론(傷寒論)』에 근거하여 소시호탕가감방(小柴胡湯加減方)과 소시호탕(小柴胡湯)을 처방하여 호전된 만성 바르톨린샘 낭종 증례 1례 보고)

  • Jae-won Jeong;Soong-in Lee
    • 대한상한금궤의학회지
    • /
    • v.15 no.1
    • /
    • pp.183-196
    • /
    • 2023
  • Objective : This study reports a case of chronic Bartholin's cyst treated with Sosiho-tang and suggests a modifying method. Methods : We reviewed a 41-year-old female patient with fatigue accompanied by chronic Bartholin's cyst. Symptomatic changes were checked on every visit using SF-12 (Short-form-12 health survey) and VAS (Visual analogue scale). The 104th provision in Shanghanlun was compared with diagnosis and process analysis. Results : The modified Sosiho-tang removed Scutellariae Radix and used Phlomidis Radix of the same weight. The exacerbation factors were characterized with excessive activity (大), Edema and swelling of the foot (滿), Feeling tired in morning (朝) in 104th provision. After 45 days modified Sosiho-tang and 15 days Sosiho-tang, SF-12 and VAS ameliorated. No adverse effects was observed to the last follow-up visit. Conclusions : Modified sisiho-tang and Sosiho-tang were effective to the patient. Clinical application of 104th provision of Shanghanlun can consider excessive activity, edema, and morning fatigue.

  • PDF