• Title/Summary/Keyword: modified excess pore pressure ratio

Search Result 8, Processing Time 0.018 seconds

Post-Cyclic Deformation Behavior of Non-Liquefied Weathered Soils (반복재하후 미액상화 풍화토 지반의 변형 거동)

  • 최연수;정충기
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.485-492
    • /
    • 2001
  • Weathered soil is one of the most representative soils in Korea. In this study, a series of cyclic triaxial tests was carried out to predict the post-cyclic deformation behavior of weathered soils in case of non-liquefaction. Excess pore pressure response during cyclic loading and volumetric strain during the dissipation of excess pore pressure were measured varying the confining pressure, relative density and cyclic stress ratio. Based on the test results, it Is found that the modified excess pore pressure ratio, excess pore pressure ratio normalized by cyclic stress ratio, is uniquely correlated with the number of cycles irrespective of confining pressure and cyclic stress ratio. Using the newly proposed MEPPR(modified excess pore pressure ratio) concept, it is possible to easily evaluate the excess pore pressure and the settlement of weathered soils due to cyclic loading by greatly reduced number of tests. It is also verified that the reconsolidation volumetric strain is independent of the way how the excess pore pressure was generated.

  • PDF

Deformation Characteristics of Non-liquefied, Reconstituted, Weathered Residual Soils due to the Cyclic Loading (반복재하에 의한 미액상화 재성형 풍화토의 변형 특성)

  • Choi Yeon-Su;Yune Chan-Young;Jang Eui-Ryong;Chung Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.6
    • /
    • pp.41-49
    • /
    • 2006
  • This paper deals with development and dissipation of excess pore pressure induced by the cyclic load. Cyclic triaxial tests on reconstituted samples of weathered residual soils, which were widely used as construction materials in Korea, were performed. Test results showed that excess pore pressures developed under undrained condition increased with the increase of cyclic loads and confining pressures. And a new concept based on modified excess pore pressure ratio (MEPPR) was proposed for simply estimating excess pore pressures in terms of the number of cyclic load, irrespective of cyclic loads and confining pressures. Also, it was proposed that excess pore pressure ratio (EPPR) could be effectively utilized to estimate volumetric strains during dissipation which decreased as confining pressures increased. Consequently, concept and method to effectively estimate settlements under non-liquefied condition, induced by dynamic loads such as earthquake loads were evaluated based on laboratory test results for reconstituted weathered residual soils.

Cyclic Threshold Shearing Strains of Sands Based on Pore Water Pressure Buildup and Variations of Deformation Characteristics (간극수압증가와 동적변형특성 변화에 근거한 사질토 지반의 반복한계전단변형률)

  • Kim, Dong-Soo;Choo, Yun-Wook
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.274-281
    • /
    • 2004
  • In this paper, the existing Stokoe type torsional shear equipment is modified to saturate the specimen and measure excess pore water pressure during undrained testing. Two types of sands, Geumgang and Toyoura sands, were collected and TS tests were performed at various densities drainage conditions, and confining pressures. The cyclic threshold shearing strains were estimated based on the variations of shear modulus, material damping ratio and pore pressures with loading cycles. The effects of relative density, confining pressure, and drainage condition on the cyclic threshold shearing strains were investigated.

  • PDF

Infiltration characteristic of modified slurry and support efficiency of filter cake in silty sand strata

  • Sai Zhang;Jianwen Ding;Ning Jiao;Shuai Sun;Jinyu Liu
    • Geomechanics and Engineering
    • /
    • v.34 no.2
    • /
    • pp.125-138
    • /
    • 2023
  • To improve the understanding of infiltration characteristic of modified slurry and the support efficiency of filter cake in silty sand strata, the slurry infiltration (SI) and filter cake formation (FCF) were investigated in a laboratory apparatus. The water discharge and the excess pore pressure at different depths of silty sand strata were measured during SI. The relationship between permeability coefficient/thickness ratio of filter cake (kc/ΔL) and effective slurry pressure conversion rate of filter cake (η) were analyzed. Moreover, the SI and FCF process as well as the modification mechanism of CMC (carboxymethyl cellulose) were clarified. The experimental results indicate the formation of only external filter cake in the silty sand strata. The slurry particles obtain thicker water membrane after being modified by CMC, which blocks partial water path in filter cake and decreases the water discharge significantly. The silty sand excavated from tunnel face also contributes to the water discharge reduction. The kc of the external filter cake ranges from 3.83×10-8 cm/s to 7.44×10-8 cm/s. The η of the external filter cake is over 96%, which decreases with increasing kc/ΔL. A silty sand content within 10% is suggested during construction to ensure the uniformity of the filter cake.

Prediction for degradation of strength and stiffness of fine grained soil using Direct Simple Shear Test (DSST) (직접단순전단시험을 통한 세립토의 강도와 강성저하 예측)

  • Song, Byung-Woong;Yasuhara, kazuya;Kim, Jeong-Ho;Choi, In-Gul;Yang, Tae-Seon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.529-536
    • /
    • 2005
  • Based on an estimating method for post-cyclic strength and stiffness with cyclic triaxial tests, Direct Simple Shear (DSS) tests were carried out to confirm whether the method can be adapted to DSS test on fine-grained soils: silty clay, plastic silt, and non-plastic silt. Results from post-cyclic DSS tests were interpreted by a modified method as adopted for post-cyclic triaxial tests. In particular, influence of plasticity index for fine-grained soils was emphasised. Findings obtained from the present study are: (i) the higher the plasticity index of fine-grained soils is, the less not stiffness ratio but strength ratio decreases with increment of a normalised excess pore water pressure; and (ii) post-cyclic strength and stiffness results from DSS tests agree well with those predicted by the method modified from a procedure used for triaxial test results.

  • PDF

An Estimating Method for Post-cyclic Strength and Stiffness of Eine-grained Soils in Direct Simple Shear Tests (직접단순전단시험을 이용한 동적이력 후 세립토의 강도 및 강성 예측법)

  • Song, Byung-Woong;Yasuhara, KaBuya;Murakami, Satoshi
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.2
    • /
    • pp.15-26
    • /
    • 2004
  • Based on an estimating method for post-cyclic strength and stiffness with cyclic triaxial tests proposed by one of the authors, cyclic Direct Simple Shear (DSS) tests were carried out to confirm whether the method can be adapted to DSS test on fine-grained soils: silty clay, plastic silt, and non-plastic silt. Results from cyclic and post-cyclic DSS tests were interpreted by a modified method as adopted for cyclic and post-cyclic triaxial tests. In particular, influence of plasticity index for fine-grained soils and initial static shear stress (ISSS) was emphasised. Findings obtained from the present study are: (i) liquefaction strength ratio of fine-grained soils decreases with decreasing plasticity index and increasing ISSS; (ii) plasticity index and ISSS did not markedly influence relation between equivalent cyclic stiffness and shear strain relations; (iii) the higher the plasticity index of fine-grained soils is, the less the strength ratio decreases with increment of a normalcies excess pore water pressure (NEPWP); (iv) stiffness ratio of plastic silt has large activity decrease rapidly with increasing excess pore water pressure; and (v) post-cyclic strength and stiffness results from DSS tests agree well with those predicted by the method modified from a procedure used for triaxial test results.

Effect of Side Friction on Consolidation Test of Normally Consolidated Kaolinite Slurry (정규압밀된 연약점토의 압밀시험시 측면 마찰의 영향)

  • Lee, Jangguen;Fox, Patrick J.
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.3
    • /
    • pp.61-68
    • /
    • 2008
  • Side friction is often neglected in the analysis of the results of a consolidation test when the specimen has a high ratio of diameter to height. As the height of a specimen increases, however, side friction becomes important. This paper presents an investigation of the effect of side friction on consolidation test results for normally consolidated kaolinite slurry. Consolidation tests were performed to obtain settlement, pore pressure, compressibility, and hydraulic conductivity of kaolinite slurry. The compressibility relationship is corrected for side friction using a modified form of Taylor (1942) analytical solution. Numerical simulations using the CS2 piecewise-linear model are compared with settlement and excess pore pressure measurements. Experimental results show improved agreement with a modified CS2 model in which the effect of side friction is considered. The numerical and experimental results indicate that the side friction is an important factor affecting the rate of consolidation as well as the compressibility relationship for the specimen.

  • PDF

The Stability Evaluation Methods of Embankment on Soft Clay (연약지반 성토의 안정평가 방법)

  • Kang, Yea Mook;Lee, Dal Won;Kim, Ji Hoon;Kim, Tae Woo;Lim, Seong Hun
    • Korean Journal of Agricultural Science
    • /
    • v.25 no.2
    • /
    • pp.260-270
    • /
    • 1998
  • The field tests were performed to suggest the rational method for stability evaluation of soft clay. The behavior of settlement-displacement obtained by field monitoring system was to compare and analyze the results of the observationed method, and to investigate the complex behavior of soft clay with filling height. The results of this study are summarized as follows. 1. The horizontal displacement was suddenly increased when physical properties of soft clay showed maximum values and the part of the turning point. The values of these properties were available to the fundamental data for stability evaluation. The shear deformation appeared that difference of the horizontal displacement was maximum values. 2. Although the stability of embankment by step filling showed the unstable part over the failure standard line, the embankment was confirmed stable. So the evaluation of the stability of embankment is reasonable to use the inclination of curve than failure standard line. 3. The horizontal displacement and relative settlement were increased as same ratio at improvement ground. Estimation of shear deformation using Terzaghi's modified bearing capacity should consider the relations of embankment load and undrained shear strength at nonimprovement ground, and minimum safety factor is recommended to use larger than 1.2. 4. Excess pore water pressure was increased with increasing of filling height and decreased with maintain the filling height. The embankment was unstable when filling height was exceed the evaluation standard line, and the behavior of excess pore water pressure and horizontal displacement could use as a standard of judgement of the filling velocity control because their behavior were agree with each other.

  • PDF