• Title/Summary/Keyword: modified atmosphere packaging

Search Result 190, Processing Time 0.03 seconds

Effect of packaging conditions on the quality changes of fermented soy paste and red pepper paste (포장조건에 따른 한국전통 된장과 고추장의 품질변화)

  • Jang, Jae-Deck;Hwang, Yong-Il;Lee, Dong-Sun
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.6 no.1
    • /
    • pp.31-36
    • /
    • 2000
  • 180g of fermented soy paste and 150g of red pepper paste were packaged in glass jars of 232 mL with different conditions of active packaging and then stored at $13^{\circ}C$ for about 170 and 128 days, respectively. During the storage, package atmosphere, surface color, pH, acidity and microbial flora were monitored to see the effect of packaging conditions. Test packaging conditions include package equipped with $Ca(OH)_2\;as\;CO_2$ absorber, package with pinhole and closed control one. Closed control packages of soypaste and red pepper paste showed the increased $CO_2$ partial pressure, the decreased $O_2$ partial pressure and the constant $N_2$ partial pressure to produce high pressure buildup with storage. The paste packages with $Ca(OH)_2$ maintained relatively low $CO_2$ partial pressure and thus the package pressure close to normal atmospheric pressure for initial storage period of 70 days. The packages with air pinhole channel had the partial pressures of $O_2\;and\;N_2$ decreased with storage time, while $CO_2$ partial pressure first increased to a maximum and then slowly decreased thereafter Without any pressure increase the packages with pinhole gave the lowest quality changes possibly due to the effect of package atmosphere, but it had problem of mold contamination and growth for soy paste after 120 days. There were no difference in microbial flora between the packages after about 70 day storage.

  • PDF

Perforation Adjustment of Unit Package for 'Fuji' Apples during Short-term Cold Storage and Export Simulation ('후지' 사과의 단기 저온저장 및 모의수출 과정에서 소포장의 천공도 조절 효과)

  • Kim, Su-Jeong;Park, Youn-Moon;Yoon, Tae-Myung
    • Horticultural Science & Technology
    • /
    • v.32 no.2
    • /
    • pp.184-192
    • /
    • 2014
  • Various types of unit packaging methods were applied for 'Fuji' apples during short-term cold storage and export simulation. Gas tightness of the package was controlled stepwise in the successive two-year experiments using different perforation treatments (none, punch hole, or pinhole) and sealing methods (tie v s. heat seal). Risk of tight packaging and effectiveness of macroperforation on weight loss and quality maintenance were analyzed as related to changes in gas concentration inside the packages. Immediately after harvest, each 5 apple units were packaged in $40{\mu}m$ polypropylene (PP) film bags, stored 4 weeks at $0^{\circ}C$, and then put on the shelf for one week at ambient temperature in the preliminary experiment, In the main experiment, export process was imposed after storage simulating 2 week refrigerated container shipment at $0^{\circ}C$ plus one week local marketing at ambient temperature. Non-perforated film packaging with relatively high gas tightness induced flesh browning caused by carbon dioxide accumulation regardless of the sealing methods. Among perforated film packaging, in contrast, atmospheric modification was partly established only in the pinhole treatment and flesh browning symptom was not observed in all the treatments. Even the punch hole perforated film packaging without gas tightness effectively reduced the weight loss, whereas had slight benefits for quality maintenance. Reduced perforation using pinhole treatment seemed to improve sensory texture, while effects on physicochemical quality were insignificant. Overall results suggest the need of more minute perforation treatments on the packaging film to ensure modified atmosphere effects on quality maintenance.

Quality Changes of 'Baumkuchen' Cake with Modified Atmosphere Packaging during Storage (변형기체포장 처리에 따른 '바움쿠헨' 케이크의 저장 중 품질 특성 변화)

  • Myungho Lee;Minhwi Kim;Youn Suk Lee
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.2
    • /
    • pp.87-94
    • /
    • 2023
  • Fresh bakery products are widely consumed worldwide and therefore particular requirements for their quality characteristics have been established. The shelf life of bakery products is mainly subjected to microbial spoilage and staling. This study investigated the optimum conditions of modified atmosphere packaging (MAP) application to extend the shelf life of the bakery products. The gas conditions of the headspace in 'Baumkuchen' cake were 0, 30, 70, and 100% CO2 concentrations and stored at 30℃ for 5 days. The bakery samples were evaluated weight loss, hardness, color change, pH and total aerobic bacteria, yeast and molds count throughout the storage period. Values of the weight loss and hardness were increased over the storage period, meanwhile pH was significantly decreased. However, no significant color changes were observed during storage. It was also found no significant difference between the different gas treatments. Total aerobic bacteria count of the stored samples after day 5 was increased by 6.94 log CFU/g in the air filled package, compared to 6.20 log CFU/g in the 100% CO2 filled package and 6.02 log CFU/g in the 70% CO2 filled package. Yeast and molds count were 3.65 log CFU/g in air filled package, 2.66 log CFU/g in 100% CO2 filled package, 2.64 log CFU/g in 70% CO2 filled package, 2.86 log CFU/g in 30% CO2 filled package and 3.31 log CFU/g in 100% N2 filled package on day 2. In conclusion, it was shown that 70% and 100% CO2 treatments in the package were effective to reduce microbial growth.

Antioxidant and Antimicrobial Efficacy of Sapota Powder in Pork Patties Stored under Different Packaging Conditions

  • Kumar, Pavan;Chatli, Manish Kumar;Mehta, Nitin;Malav, Om Prakash;Verma, Akhilesh Kumar;Kumar, Devendra;Rathour, Manjeet
    • Food Science of Animal Resources
    • /
    • v.38 no.3
    • /
    • pp.593-605
    • /
    • 2018
  • The present study was undertaken to assess the efficacy of sapota powder (SP) as natural preservatives and its better utilization in food processing with the incorporation of various levels of SP (2, 4, and 6%) by replacing lean meat. Based on the sensory attributes, pork patties with 4% incorporation of SP was found optimum and selected for further storage studies with control under aerobic and modified atmosphere packaging at refrigeration temperature ($4{\pm}1^{\circ}C$) for 42 days for assessing its antioxidant and antimicrobial efficiency. During entire storage period, indicators of lipid oxidative parameters such as thiobarbituric acid reactive substances (TBARS), free fatty acids (FFA) and peroxide value (PV) followed an increasing trend for control as well as treated products; however, treated product showed a significantly (p<0.05) lower value than control. A significantly lower (p<0.05) microbial count in treated patties than control was noted during entire storage. The sensory attributes are better retained in treated product as compared to control and even on $42^{nd}$ day, overall acceptability of treated patties was found to fall in moderately acceptable category (5.95 in aerobic packets and 5.91 in modified atmosphere packets). Therefore SP has potential to enhance antioxidant and antimicrobial properties of pork patties during storage.

Effect of Packaging Conditions on the Fruit Quality of Chinese Quince

  • An, Duck-Soon;Lee, Dong-Sun
    • Food Science and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.683-687
    • /
    • 2006
  • The respiration rate of Chinese quince was measured at 0, 5, 10, and $20^{\circ}C$ to determine its tolerable range of storage temperatures. Based on the measured respiration rates, plastic films covering a wide range of gas permeabilities were used for packaging and storing individual Chinese quince at 0 and $10^{\circ}C$. Chinese quince can be categorized as low respiration fruit. Higher respiratory quotients were observed at higher temperature suggesting that the tolerable temperature range for storage is $0-10^{\circ}C$. Packages containing Chinese quince wrapped in highly gas-permeable polyolefin film PD 941 attained, with progressive decreases in volume, 9.5-10.2% $O_2$ and 1.3-1.8% $CO_2$ at $0^{\circ}C$, 8.1% $O_2$ and 2.4% $CO_2$ at $10^{\circ}C$. At these levels, PD 941 could preserve the fruit at acceptable quality levels for 152 and 50 days at 0 and $10^{\circ}C$, respectively. Less gas-permeable packages built up high $CO_2$ concentrations (above 15.8%) and low $O_2$ concentrations (less than 1.8%) causing free volume expansion and eventual dark discoloration of the fruit. The storage life realized by packaging with polyolefin film PD 941 could facilitate the availability of Chinese quinces in winter and spring for medicinal or ornamental purposes in the fresh state.

Microbial changes under packaging conditions during transport and comparison between sampling methods of beef

  • Yim, Dong-Gyun;Jin, Sang-Keun;Hur, Sun-Jin
    • Journal of Animal Science and Technology
    • /
    • v.61 no.1
    • /
    • pp.47-53
    • /
    • 2019
  • This study was performed to evaluate the microbial and temperature changes of boxed beef during transport and distribution under vacuum and modified atmosphere packaging (MAP), and to compare between excision and swab sampling for 15 days. The top round and striploin (quality grade 1) from Hanwoo steers at 2 days post-slaughter were obtained from a local meat processing plants and chilled at $4{\pm}2^{\circ}C$ in a cold room. The boxes were transported under refrigeration ($4{\pm}2^{\circ}C$) to the laboratory within half an hour. Vacuum and MAP packs were subsequently taken out from cool boxes, and microbiological examinations were carried out at 0, 6, 12, and 24 h of storage time. MAP was more effective than vacuum packaging for the inhibition of total aerobic, lactic acid bacteria and Pseudomonas (p < 0.05). Microbial loads of swab methods were slightly lower than those of excision ones (p < 0.05). The results of this study could be utilized by meat consumers in future studies as well as by manufacturers to determine the ideal storage conditions for cool boxed meat, thus ensuring reduced economic losses due to spoilage.

Effect of Modified Atmosphere Packaging Gas Composition on Quality Preservation of Korean Rockfish Fillets (조피볼락 필렛의 변형기체포장에서 품질보존에 미치는 기체조성의 영향)

  • Eo Jin Park;Su Chan Kim;Duck Soon An
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.3
    • /
    • pp.145-151
    • /
    • 2023
  • In order to extend shelf life for rockfish fillets by modified atmosphere packaging (MAP), different package atmospheres were compared in the product quality preservation. Firstly, CO2 solubility was measured at 0, 5, 10, and 15℃ to be incorporated into the mathematical model to predict the volume and CO2 concentration of the package at expected storage temperature. The CO2 solubility given in Henry's constant decreased with temperature to be fitted with a linear equation. Then air packaging as control and four MAP conditions of 100 g fillets were prepared and stored for duration of 5 days at 10℃ to compare them in the quality preservation effect. Four MAP conditions employed were CO2(60):O2(30):N2(10), CO2(60):O2(0):N2(40), CO2(30):O2(30):N2(40) andCO2(30):O2(0):N2(70). MAP conditions with high CO2 concentration inhibited total aerobic bacteria, and the conditions containing O2 led to low TVB-N. MAP of CO2(60):O2(30):N2(10) was found to be the best condition for rockfish fillet preservation considering total aerobic bacteria growth and nitrogenous volatiles production.

Effect of Various Packaging Methods on Small-Scale Hanwoo (Korean Native Cattle) during Refrigerated Storage

  • Yu, Hwan Hee;Song, Myung Wook;Kim, Tae-Kyung;Choi, Yun-Sang;Cho, Gyu Yong;Lee, Na-Kyoung;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.38 no.2
    • /
    • pp.338-349
    • /
    • 2018
  • The objective of this study was to investigate comparison of physicochemical, microbiological, and sensory characteristics of Hanwoo eye of round by various packaging methods [wrapped packaging (WP), modified atmosphere packaging (MAP), vacuum packaging (VP) with three different vacuum films, and vacuum skin packaging (VSP)] at a small scale. Packaged Hanwoo beef samples were stored in refrigerated conditions ($4{\pm}1^{\circ}C$) for 28 days. Packaged beef was sampled on days 0, 7, 14, 21, and 28. Physicochemical [pH, surface color, thiobarbituric acid reactive substances (TBARS), and volatile basic nitrogen (VBN) values], microbiological, and sensory analysis of packaged beef samples were performed. VP and VSP samples showed low TBARS and VBN values, and pH and surface color did not change substantially during the 28-day period. For VSP, total viable bacteria, psychrotrophic bacteria, lactic acid bacteria, and coliform counts were lower than those for other packaging systems. Salmonella spp. and Escherichia coli O157:H7 were not detected in any packaged beef samples. A sensory analysis showed that the scores for appearance, flavor, color, and overall acceptability did not change significantly until day 7. In total, VSP was effective with respect to significantly higher $a^*$ values, physicochemical stability, and microbial safety in Hanwoo packaging (p<0.05).

Study of Pallet Scale Modified Atmosphere Packaging Films for Reducing Water Condensation

  • Kim, Jinse;Park, Jong Woo;Park, Seokho;Choi, Dong Soo;Choi, Seung Ryul;Kim, Yong Hoon;Lee, Soo Jang;Park, Chun Wan;Lee, Jung- Soo;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • v.41 no.2
    • /
    • pp.98-107
    • /
    • 2016
  • Purpose: The aim of this study was to find an appropriate polymer film, which could reduce the water condensation for pallet-size modified atmosphere packaging (MAP). Methods: Five different types of films were selected from several commercialized films. Prior to the real food storage test, plastic boxes with wetted plastic balls were used to simulate the high humidity conditions of real food storage. The initial MAP condition was 5% oxygen and 95% nitrogen, and the $O_2$ concentration, the relative humidity and water condensation inside the films were checked on a daily basis. The MAP test for tomatoes was conducted by using the most appropriate film from the five films examined in this study. Results: Every film except Mosspack(R) indicated a similar variation in the $O_2$ concentration over the course of time. The relative humidity near the surfaces of all the films except nylon-6 approached saturation conditions over time. For three kinds of films, namely, low-density polyethylene (LDPE) film, anti-fogging oriented polypropylene (AFOPP) film, and Mosspack(R), the inner surfaces of the films were fully covered with dew after a storage period of a day. Conversely, an area of 4.5% was covered with dew in the case of the poly lactic acid (PLA) film, and there was no dew inside the nylon-6 film. The pallet-size MAP test for tomatoes was conducted by using the nylon-6 film and there was no water condensation inside the nylon-6 film over three weeks of storage. Conclusions: During the pallet scale MAP, water condensation could cause severe fungal infection and wetting of the corrugated box. Hence, it was important to minimize water condensation. This study showed that the MAP films with high WVTR such as nylon-6 and PLA could reduce the water condensation inside the pallet scale MAP.