• Title/Summary/Keyword: modified amine

Search Result 113, Processing Time 0.024 seconds

Natural Dyeing of Chitosan Crossinked Cotton Fabrics - Gromwell - (키토산 가교 처리된 면직물의 천연염색에 관한 연구 - 자초를 중심으로 -)

  • Kwak, Mi-Jung;Lee, Shin-Hee
    • Fashion & Textile Research Journal
    • /
    • v.14 no.2
    • /
    • pp.311-319
    • /
    • 2012
  • The purpose of this study is to investigate the dyeing property of gromwell on modified cotton fabric by chitosan. Modified cotton fabrics were manufactured by crosslinking agent epichlorohydrin in the presence of chitosan. Gromwell colorants were extracted with methanol. Modified cotton fabrics dyed using gromwell were post-mordanted using Al, Fe and Cu. The dyeability (K/S) and color factors (L, a, b, ${\Delta}E$ and h) of modified cotton fabrics were measured by computer color matching. Additionally the fastness to washing and light were also investigated. The dye-uptake of modified cotton fabrics increased with the dyeing time. The saturated dyeing time was about 10minutes at $50^{\circ}C$. The dyeability (K/S) was remarkably increased with increasing content of chitosan because of having a amine group of chitosan. Modified cotton fabrics were dyed yellowish red by non and Fe mordanting, blueish red by Al and Cu mordanting, respectively. The washing fastness of non, Al, Fe and Cu mordant in the presence and absence of chitosan were increased $1{\rightarrow}2$, $3{\rightarrow}4$, $4{\rightarrow}4-5$ and $4{\rightarrow}4-5$ respectively. And light fastness of non, Al, Fe and Cu mordant in the presence and absence of chitosan were increased $1{\rightarrow}1-2$, $1{\rightarrow}1-2$, $1.2{\rightarrow}2.3$ and $1-2{\rightarrow}2$ respectively.

Manufacturing and Mechanical Properties of Epoxy Fibers Spinning using Anhydride and Amine Hardeners (산 무수물계 및 아민계 경화제를 이용한 열경화성 에폭시 섬유 제조 및 물성)

  • Shin, Pyeong-Su;Kim, Jong-Hyun;Park, Ha-Seung;Baek, Yeong-Min;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.29 no.6
    • /
    • pp.408-413
    • /
    • 2016
  • Commonly-used polymers are manufactured as versatile forms. Furthermore, continuous polymer fibers are recently manufactured using nylon or aramid fiber. One of common epoxy was also used to make polymer fibers. Bisphenol-A type was used as base epoxy whereas amine and anhydride were used as hardeners. Epoxy fibers was cured by stepping up the temperature to maintain the shape of epoxy fiber. Surface energy was measured to confirm the degree of interfacial adhesion by modified static contact angle method. After mechanical properties were measured via fiber tensile test, the evaluation of fiber fracture was proceeded. Tensile strength of epoxy fiber using amine type hardener was higher as 138 MPa than anhydride case as 70 MPa. Fractured surface exhibited different failure patterns at the cross-section.

Effect of Amine Functional Group on Removal Rate Selectivity between Copper and Tantalum-nitride Film in Chemical Mechanical Polishing

  • Cui, Hao;Hwang, Hee-Sub;Park, Jin-Hyung;Paik, Ungyu;Park, Jea-Gun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.546-546
    • /
    • 2008
  • Copper (Cu) Chemical mechanical polishing (CMP) has been an essential process for Cu wifing of DRAM and NAND flash memory beyond 45nm. Copper has been employed as ideal material for interconnect and metal line due to the low resistivity and high resistant to electro-migration. Damascene process is currently used in conjunction with CMP in the fabrication of multi-level copper interconnects for advanced logic and memory devices. Cu CMP involves removal of material by the combination of chemical and mechanical action. Chemicals in slurry aid in material removal by modifying the surface film while abrasion between the particles, pad, and the modified film facilitates mechanical removal. In our research, we emphasized on the role of chemical effect of slurry on Cu CMP, especially on the effect of amine functional group on removal rate selectivity between Cu and Tantalum-nitride (TaN) film. We investigated the two different kinds of complexing agent both with amine functional group. On the one hand, Polyacrylamide as a polymer affected the stability of abrasive, viscosity of slurry and the corrosion current of copper film especially at high concentration. At higher concentration, the aggregation of abrasive particles was suppressed by the steric effect of PAM, thus showed higher fraction of small particle distribution. It also showed a fluctuation behavior of the viscosity of slurry at high shear rate due to transformation of polymer chain. Also, because of forming thick passivation layer on the surface of Cu film, the diffusion of oxidant to the Cu surface was inhibited; therefore, the corrosion current with 0.7wt% PAM was smaller than that without PAM. the polishing rate of Cu film slightly increased up to 0.3wt%, then decreased with increasing of PAM concentration. On the contrary, the polishing rate of TaN film was strongly suppressed and saturated with increasing of PAM concentration at 0.3wt%. We also studied the electrostatic interaction between abrasive particle and Cu/TaN film with different PAM concentration. On the other hand, amino-methyl-propanol (AMP) as a single molecule does not affect the stability, rheological and corrosion behavior of the slurry as the polymer PAM. The polishing behavior of TaN film and selectivity with AMP appeared the similar trend to the slurry with PAM. The polishing behavior of Cu film with AMP, however, was quite different with that of PAM. We assume this difference was originated from different compactness of surface passivation layer on the Cu film under the same concentration due to the different molecular weight of PAM and AMP.

  • PDF

Preparation of Mesoporous Materials and Thin Films It's Application for DNA Sensor

  • Han, Seung-Jun;Heo, Soon-Young;Park, Keun-Ho;Lee, Soo;Kim, Byung-Kwan;Kim, Jin-Heung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.345-351
    • /
    • 2004
  • Highly ordered pure-silica MCM-41 materials possessing well-defined morphology have been successfully prepared with surfactant used as a template. The fabrication of mesoporous silica has received considerable attention due to the need to develop more efficient materials' for catalysis, separations, and chemical sensing. The surface modified MCM-41 was used as anadsorbent for biomolecules. Silica-supported organic groups and DNA adsorption on surface modified MCM-41 were investigated by FT-IR and UV-Vis spectrometer, respectively. The use of MCM-41 as the modification of electrode surfaces were investigated electrochemical properties of metal mediators with biomolecules. The modified ITO electrodes increased peak currents for a redox process of $[Ru(bpy)_3]^{2+}$ relative to the bare electrode. The electrochemical detection of DNA by cyclic voltammetry when the current is saturated in the presence of the mediator appeared more sensitive due to a higher catalytic current on the MCM-41 supported electrodes modified by carboxylic acid functional groups. The carboxyl or amine groups on the surface of MCM-41 interact and react with the $-NH_2$ groups of guanine and backbone, respectively. Highly ordered mesoporous materials with organic groups could find applications as DNA sensors.

Comparison between the liquid-liquid partition method and modified QuEChERS method for the analysis of pesticide residues in beef fat (소지방 중 잔류농약분석을 위한 액-액분배법과 modified QuEChERS법 비교)

  • Kim, Yoen-Joo;Choi, Yoon-Hwa;Shin, Bang-Woo;Lee, Jung-Hark
    • Korean Journal of Veterinary Service
    • /
    • v.34 no.4
    • /
    • pp.429-439
    • /
    • 2011
  • This article described the comparison of a quick, easy, cheap, effective, rugged and safe (QuEChERS) sample preparation and the classical method established by National Veterinary Research and Quarantine Service (NVRQS) for the determination of pesticide residues in livestock products using GC-tandem mass spectrometry. The classical method by NVRQS used liquid-liquid partioning followed by evaporizing. The modified QuEChERS entailed extraction of 2 g sample with 15 ml acetonitrile containing 1% acetic acid followed by addition of 6 g anhydrous magnesium sulfate and 1.5 g sodium acetate. After centrifugation, 6 ml of the extract underwent a cleanup step (in a technique known as column-based solid phase extraction) using 400 mg each of $C_{18}$ and primary secondary amine sorbents plus 1,200 mg magnesium sulfate. The quantitation of individual pesticides by both methods was based on tissue standard calibration curves with a correlation coefficient in excess of 0.98 for the 24 pesticides. The detection limits by the classical method were ranged 1.3~5.0 ${\mu}g$/kg, with mean recoveries between 76.2% and 114.3% except aldrin (59.3%) and deltamethrin (63.6%). The detection limits by modified QuEChERS were ranged 0.3~6.2 ${\mu}g$/kg, with mean recoveries between 68.0% and 114.3% except dimethipin (152.6%), chlorfenvinphos (138.1%), 4,4-DDT (61.5%), aldrin (60.4%) and chinomethionate (30.3%).

Properties of Polyamide Modified PVC-sol Sealants (II) (폴리아미드가 함유된 PVC졸 실란트의 물성 (II))

  • Lee, Seung-Jin;Kim, Hyun-Kyo;Park, Hwan-Man;Cho, Won-Jei;Ha, Chang-Sik
    • Elastomers and Composites
    • /
    • v.34 no.1
    • /
    • pp.53-64
    • /
    • 1999
  • The mechanical, electrical, and thermal properties of polyamide-modified poly (vinyl chloride) (PVC)-sol was investigated. PVC-sol was plasticized with dioctyl phthalate (DOP). In this work, the effects of the addition of polyamide on the properties of PVC-sol seal-ants were investigated. Two kinds of polyamide resins having different amine value were used. It was found that the properties of the PVC-sol sealants were significantly affected by the contents and types of the added polyamide rosins. The PVC-sol sealants modified with polyamide A (low amino value) showed higher tensile properties than those modified with polyamide B(high amino value) did, and thermal stability of the sealants showed nearly the same trends. The tensile strength of sealants were decreased with increasing the $CaCO_3$ contents. The dielectric constant were not strongly dependent on the polyamide types and contents.

  • PDF

Surface Modification of Reverse Osmosis Membrane with Diphenylamine for Improved Chlorine and Fouling Resistance (Diphenylamine에 의해 표면개질된 역삼투막의 내염소성 및 내오염성 향상)

  • Kwon, Sei;Jee, Ki Yong;Lee, Yong Taek
    • Membrane Journal
    • /
    • v.23 no.6
    • /
    • pp.439-449
    • /
    • 2013
  • This study investigated the aromatic polyamide reverse osmosis membrane was modified with diphenylamine (DPA) for enhanced chlorine and fouling resistance and how to optimize. DPA has high reactivity and thermo chemical stability. The performance of a modified membranes was investigated and its surface analyzed using atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and contact angle measurement. The experiment was conducted while changing the conditions of temperature and DPA solution concentration.

Solid Phase Extraction of Celecoxib from Drug Matrix and Biological Fluids by Grafted Poly β-cyclodextrine/allyl Amine Magnetic Nano-particles

  • Kamari, Sahar;Panahi, Homayon Ahmad;Baimani, Nasim;Moniri, Elham
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.287-295
    • /
    • 2017
  • Using nanotechnology, magnetic nanoparticles of iron oxide were produced via co-precipitation method and followed modification with organic compounds. In the next step, functionalized monomer was provided via coupling ${\beta}$-cyclodextrine and allylamine onto modified magnetic nanoparticles. These nanoparticles were used to establish the adsorption rate of celecoxib. Magnetic nanoparticles are modified by (3-mercaptopropyl)trimethoxysilane. Nano-adsorbent was characterized by analytical and spectroscopic methods, such as Fourier transform infrared spectroscopy, elemental analysis, thermo-gravimetric analysis, and transmission electron microscopy (TEM). Laboratory parameters, such as the kinetics of adsorption isotherms, pH, reaction temperature and capacity were optimized. Finally, by using this nano-adsorbent in the optimized condition, extraction of celecoxib from biological samples as urine, drug matrix and blood plasma was carried out by high performance liquid chromatography with sensitivity and high accuracy.

Electrodeposition of AuPt Alloy Nanostructures on a Biotemplate with Hierarchically Assembled M13 Virus Film Used for Methanol Oxidation Reaction

  • Manivannan, Shanmugam;Seo, Yeji;Kim, Kyuwon
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.284-293
    • /
    • 2019
  • Herein, we report an electrode surface with a hierarchical assembly of wild-type M13 virus nanofibers (M13) to nucleate the AuPt alloy nanostructures by electrodeposition. M13 was pulled on the electrode surface to produce a virus film, and then a layer of sol-gel matrix (SSG) was wrapped over the surface to protect the film, thereby a bio-template was constructed. Blending of metal binding domains of M13 and amine groups of the SSG of the bio-template were effectively nucleate and directed the growth of nanostructures (NSs) such as Au, Pt and AuPt alloy onto the modified electrode surface by electrodeposition. An electrocatalytic activity of the modified electrode toward methanol oxidation in alkaline medium was investigated and found an enhanced mass activity ($534mA/mg_{Pt}$) relative to its controlled experiments. This bio-templated growth of NSs with precise composition could expedite the intention of new alloy materials with tuneable properties and will have efficacy in green energy, catalytic, and energy storage applications.

Nonlocal strain gradient theory for buckling and bending of FG-GRNC laminated sandwich plates

  • Basha, Muhammad;Daikh, Ahmed Amine;Melaibari, Ammar;Wagih, Ahmed;Othman, Ramzi;Almitani, Khalid H;Hamed, Mostafa A.;Abdelrahman, Alaa;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • v.43 no.5
    • /
    • pp.639-660
    • /
    • 2022
  • The bending and buckling behaviours of FG-GRNC laminated sandwich plates are investigated by using novel five-variables quasi 3D higher order shear deformation plate theory by considering the modified continuum nonlocal strain gradient theory. To calculate the effective Young's modulus of the GRNC sandwich plate along the thickness direction, and Poisson's ratio and mass density, the modified Halpin-Tsai model and the rule of the mixture are employed. Based on a new field of displacement, governing equilibrium equations of the GRNC sandwich plate are solved using a developed approach of Galerkin method. A detailed parametric analysis is carried out to highlight the influences of length scale and material scale parameters, GPLs distribution pattern, the weight fraction of GPLs, geometry and size of GPLs, the geometry of the sandwich plate and the total number of layers on the stresses, deformation and critical buckling loads. Some details are studied exclusively for the first time, such as stresses and the nonlocality effect.