• Title/Summary/Keyword: modified Mohr-Coulomb model

Search Result 19, Processing Time 0.024 seconds

A Study on the Displacement Behavior according to the Analysis Model of Ground Excavation (지반굴착 해석모델에 따른 변위거동에 관한 연구)

  • Chung, Jeeseung;Shin, Youngwan;Kim, Manhwa;Kook, Yunmo;Jeong, Kyukyung;Kim, Pilsoo;Lee, Sanghwan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.4
    • /
    • pp.27-32
    • /
    • 2018
  • There were many ground excavation projects from past to present to make effective use of the limited land. And it is very important to predict the ground behavior depending on construction stage for ground excavation. Excavation of the ground involves changes in the stress and displacement of the ground around the excavated surface. Thus it affects the stability of the adjacent structure as well as the excavated surface. Therefore, it is very important to predict the ground behavior and stability of adjacent structure. And nowadays, numerical analysis methods are most often used to predict the effects of ground excavation. Recent, improvements of numerical analysis programs, along with improved computer performance, have helped solve complicated ground problems. However, except some specialized numerical analysis, most numerical analysis often predicts larger excavation floor displacement than field data due to adopt the Mohr-Coulomb analysis model. As a result, it raise the problem that increasing the amount of support on ground and structure. In this study, ground behavior analysis depending on analysis model (Mohr-Coulomb, Duncan-Chang, Modified Mohr-Coulomb and Hardening Soil model) has been carried out through the numerical analysis. When numerical analysis is carried out, this study is expected to be used as a basic data for adopting a suitable analysis model in various ground excavation project.

Numerical Simulation of Cone Penetration Tests in Sand Ground Using Critical State Mohr Coulomb Plasticity Model (한계상태 Mohr Coulomb 소성 모델을 활용한 콘관입시험의 수치적 모사)

  • Woo, Sang Inn;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.2
    • /
    • pp.37-51
    • /
    • 2019
  • This study focuses on the numerical simulations of the cone penetration tests in a sand ground. The mechanical responses of sand were described using the modified Mohr Coulomb plasticity model based on the critical state soil mechanics. In the plasticity model, the dilatancy angle was not a constant, but a function of the distance to the critical state line from the current state of void ratio and mean effective stress. To simulate cone penetration tests numerically, this study relied on Lagrangian finite element method under the axisymmetric condition. To enable penetration of the cone penetrometer without tearing elements along the symmetric axis, the penetration guide concept was adopted in this study. The results of numerical simulations on the calibration chamber cone penetration tests had good agreement with the experimental results.

A Study of Lateral Resistance of Block Breakwater Combined with Piles (수치해석을 이용한 말뚝이 결합된 블록식방파제의 수평저항력에 관한 연구)

  • Lee, Won-Hyo;Kwon, Soon-Goo;Kim, Tae-Hyung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.4
    • /
    • pp.100-108
    • /
    • 2022
  • Three-dimensional FEM numerical analysis was performed to understand the behaviors of blocks and piles according to the horizontal load for the block breakwater combined with piles. The Modified Mohr-Coulomb model, the improved version of the Mohr-Coulomb model, was applied for the ground modeling. The cases when the pile is embedded only into the block, embedded to the riprap layer (H = 4.29 cm), and embedded to the ground down to 2H, 3H, and 4H were examined. The results of the laboratory model experiment and the numerical analysis showed similar horizontal resistance force-displacement behaviors. The pile showed rotational behavior up to the embedment depth of 1H~2H and bending behavior in the case of 3H~4H depth embedment. When the embedment depth of the pile is 3H or more, the pile shows a bending behavior, so it can be considered that the pile contributes significantly to the horizontal resistance of the block breakwater. The results of this study will be used for various numerical analyses for real-size structure design.

Numerical Implementation of Modified Coulomb-Mohr Yield Criterion for Anisotropic and Asymmetric Materials

  • Lee Myoung-Gyu;Kim Ji-Hoon;Ryou Han-Sun;Chung Kwan-Soo;Youn Jae-Ryoun;Kang Tae-Jin
    • Fibers and Polymers
    • /
    • v.7 no.3
    • /
    • pp.276-285
    • /
    • 2006
  • Development and numerical implementation for an elastoplastic constitutive model for anisotropic and asymmetric materials are presented in this paper. The Coulomb-Mohr yield criterion was modified to consider both the anisotropic and asymmetric properties. The modified yield criterion is an isotropic function of the principal values of a symmetric matrix which is linearly transformed from the Cauchy stress space. In addition to the constitutive equation, the numerical treatment for the singularity in the vertex region of yield surface and stress integration algorithm based on elastoplasticity were presented. In order to assess the accuracy of numerical algorithm, isoerror maps were considered. Also, extension of a strip with a circular hole was simulated and results compared with those obtained using the (smooth) Mises yield criterion to validate stress output for a complex stress state.

Assessment of Static and Cyclic Load Model Test on Soft Clay Layer Reinforced by Geosynthetics (토목섬유로 보강한 연약지반의 정$\cdot$반복하중 모형실험에 의한 평가)

  • Kim Young-Su;Kwon Sung-Mok;Kim Yeun-Wook;Kim Hyoung-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.179-186
    • /
    • 2005
  • Each static and cyclic load test was performed in a laboratory model test. As a result, ground displacement decreased and bearing capacity of the soil increased owing to the sheer strength of geosynthetics in general. In addition, numerical analysis was operated using Mohr-Coulomb, Modified Cam-Clay models, and FLAC 4.0 2D and compared with the laboratory model test. The results were shown to be of a great difference because the existing equations had not considered the characteristics that sheer strength increases with a load increment. Therefore, this paper proposes an equation of cable elements considering an effect of load given through repeated tests.

Failure analysis of tubes under multiaxial proportional and non-proportional loading paths

  • Mohammad Hossein Iji;Ali Nayebi
    • Steel and Composite Structures
    • /
    • v.47 no.2
    • /
    • pp.289-296
    • /
    • 2023
  • The failure of a thin-walled tube was studied in this paper based on three failure models. Both proportional and non-proportional loading paths were applied. Proportional loading consisted of combined tension-torsion. Cyclic non-proportional loading was also applied. It was a circular out-of-phase axial-shear stress loading path. The third loading path was a combination of a constant internal pressure and a bending moment. The failure models under study were equivalent plastic strain, modified Mohr-Coulomb (Bai-Wierzbicki) and Tearing parameter models. The elasto-plastic analysis was conducted using J2 criterion and nonlinear kinematic hardening. The return mapping algorithm was employed to numerically solve the plastic flow relations. The effects of the hydrostatic stress on the plastic flow and the stress triaxiality parameter on the failure were discussed. Each failure model under study was utilized to predict failure. The failure loads obtained from each model were compared with each other. The equivalent plastic strain model was independent from the stress triaxiality parameter, and it predicted the highest failure load in the bending problem. The modified Mohr-Coulomb failure model predicted the lowest failure load for the range of the stress triaxiality parameter and Lode's angle.

Coupling numerical modeling and machine-learning for back analysis of cantilever retaining wall failure

  • Amichai Mitelman;Gili Lifshitz Sherzer
    • Computers and Concrete
    • /
    • v.31 no.4
    • /
    • pp.307-314
    • /
    • 2023
  • In this paper we back-analyze a failure event of a 9 m high concrete cantilever wall subjected to earth loading. Granular soil was deposited into the space between the wall and a nearby rock slope. The wall segments were not designed to carry lateral earth loading and collapsed due to excessive bending. As many geotechnical programs rely on the Mohr-Coulomb (MC) criterion for elastoplastic analysis, it is useful to apply this failure criterion to the concrete material. Accordingly, the back-analysis is aimed to search for the suitable MC parameters of the concrete. For this study, we propose a methodology for accelerating the back-analysis task by automating the numerical modeling procedure and applying a machine-learning (ML) analysis on FE model results. Through this analysis it is found that the residual cohesion and friction angle have a highly significant impact on model results. Compared to traditional back-analysis studies where good agreement between model and reality are deemed successful based on a limited number of models, the current ML analysis demonstrate that a range of possible combinations of parameters can yield similar results. The proposed methodology can be modified for similar calibration and back-analysis tasks.

Modeling of pressuremeter tests to characterize the sands

  • Oztoprak, Sadik;Sargin, Sinan;Uyar, Hidayet K.;Bozbey, Ilknur
    • Geomechanics and Engineering
    • /
    • v.14 no.6
    • /
    • pp.509-517
    • /
    • 2018
  • This paper proposes a numerical methodology for capturing the complete curve of a pressuremeter test including initial or disturbed parts and loops through a stiffness-based approach adopted in three dimensional finite difference code, FLAC3D. In order to enable this, a new hyperbolic model was used to replace the conventional linear elastic model prior to peak strength of Mohr-Coulomb soil model and update or degradation of shear modulus was considered. Presented modeling approach and implemented constitutive model are impressively successful. It leads to obtain the whole set of parameters for characterizing sands and seems promising for modeling the most of geotechnical structures.

Passive Earth Pressure Transition Behind Retaining Walls (옹벽의 변위에 따른 정지토압에서 수동토압까지의 변화)

  • 김홍택
    • Geotechnical Engineering
    • /
    • v.3 no.2
    • /
    • pp.55-70
    • /
    • 1987
  • An analytical solution procedure is described to estimate the developed passive lateral earth Pressures behind a vertical rigid retaintng wall rotating about its toe into a mass of cohesionless soil. Various stases of wall rotation, starting from an at-rest state to an initial Passive state to a full Passive state, are considered in the analysis. Condition of failure defined by a modified Mohr-coulomb criterion, together with equilibrium conditions, is used to obtain the necessary equations for the solution. Using methods of stress characteristics and numerical finite difference, a complete solution within and on the boundaries of the entire solution domain is made possible. The variations of the soil shear strength and the wall friction at various depths and stages of wall rotation are also taken into account in the analysis. The results predicted by the developed method of analysis are compared with those obtained from the experimental model tests on loose and dense sand. The comparisons show good agreements at various stages of retaining wall rotation Fin- ally, results of analytical parametric study are presented to demonstrate the effects of wall fric- tion on the resultant thrust and distribution of developed lateral earth pressures.

  • PDF

Estimation of Pile Tension Loads Induced by Excavation in Singapore Soft Clay Applying a Pile-Plugged Jet Grouted Slab (말뚝-그라우트 슬라브가 적용된 싱가포르 연약지반 굴착 시 말뚝 인장력 산정에 관한 연구)

  • Lee, Seung-Rae;Park, Hyun-Ku;Shim, Jai-Beom;Lim, Seok-San;Shin, Kang-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.9
    • /
    • pp.77-92
    • /
    • 2009
  • In the present paper, a numerical study was carried out for a reasonable and realistic evaluation of tension loads in piles during deep excavation in Singapore soft soil applying pile-plugged jet grouted slab. Based on 2-dimensional finite element analyses using linear elastic-perfectly plastic soil model obeying Mohr-Coulomb failure criterion, effects of pile-plugged jet grouted slab on the stability during excavation were examined, and a parametric study was also conducted to investigate critical influencing parameters in the estimation of reliable pile tension loads. Finally, based on the Modified Cam-Clay model, pile tension loads were estimated by considering on-going consolidation state of the Singapore clay deposit and the range of critical parameters observed during laboratory tests.