• Title/Summary/Keyword: modified Mohr-Coulomb failure criterion

Search Result 16, Processing Time 0.033 seconds

Numerical Study on the Stability Analyses of Rock Slopes considering Non-linear Characteristics of Hoek-Brown Failure Criterion (Hoek-Brown 파괴기준의 비선형성을 고려한 암반사면 안정성 평가의 수치해석적 연구)

  • Chun, Byung-Sik;Lee, Jin-Moo;Choi, Hyun-Seok;Seo, Deok-Dong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.2
    • /
    • pp.77-91
    • /
    • 2003
  • The Hoek-Brown failure criterion for rock masses developed first in 1980 is widely accepted and has been applied in a variety of rock engineering problems including slope analyses. The failure criterion was modified over the years because rock mass strength by the original failure criterion in 1980 was overestimated. The modified failure criterion, named Generalized Hoek-Brown Failure Criterion, was proposed with a new classification called the Geological Strength Index(GSI) in 1994. Generally, Hoek-Brown failure criterion is applied in numerical analyses of rock mass behaviors using equivalent Mohr-Coulomb parameters estimated by linear regression method. But these parameters estimated by this method have some inaccuracies to be applied and to be incorporated into numerical models and limit equilibrium programs. The most important issue is that this method cannot take account of non-linear characteristics of Hoek-Brown criterion, therefore, equivalent Mohr-Coulomb parameters is used as constant values regardless of field stress distribution in rock masses. In this study, the numerical analysis on rock slope stability considering non-linear characteristics of Hoek-Brown failure criterion was carried out. Futhermore, by the latest Hoek-Brown failure criterion in 2002, the revised estimating method of equivalent Mohr-Coulomb parameters was applied and rock mass damage criterion is introduced to account for the strength reduction due to stress relaxation and blast damge in slope stability.

  • PDF

A Comarative study on slope stability modeling of highly fractured rock slopes (절리암반사면의 안정해석 방법에 관한 비교연구)

  • Yoo, Chung-Sik;Kim, Sun-Bin;Yang, Ki-Ho;Jung, Ha-Seung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.434-443
    • /
    • 2009
  • Slope stability analysis is an essential part of rock slope design. For highly fractured rock, the limit equilibrium method (LEM) based slope stability analysis with a circular failure surface is often carried out assuming the rock mass behaves more or less as a continuum. This paper examines first, the applicability of the finite-element method (FEM) based shear strength reduction (SSR) technique for highly fractured rock slope, and second the use of Mohr-Coulomb (MC) failure criterion in conjunction with generalized Hoek-Brown (HB) failure criterion. The numerical results on a number of cases are compared in terms of the factor of safety (FS). The results indicated that the FEM-based SSR technique yields almost the same FSs from LEM, and that the MC and HB failure criteria yield almost identical FSs when the strength parameters for MC failure criterion are obtained based on the modified HB failure criterion if and only if value of the Hoek-Brown constant $m_i$ is smaller than 10 and slope angle is smaller than 1:1, otherwise MC failure criteria over-estimate the factor of safety.

  • PDF

Development of Tensile Strength Measurement Technique on Compacted Fine-Grained Soils (다짐된 세립토의 인장강도 측정법의 개발)

  • Kim, Tae-Hyung;Kim, Chan-Kee;Yun, Jung-Man;You, Seung-Kyong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1538-1545
    • /
    • 2005
  • Theoretical and experimental result studies of the unconfined penetration test (UP) method are conducted to suggest a new test method by improving the UP method for determination of the tensile strength of compacted fine-grained soils. From the theoretical aspect, the tensile strength of the specimen is estimated from the maximum load by the theory of perfect plasticity with assumptions, sufficient local deformability and modified Mohr-Coulomb failure criterion. Experimentally, some factors including relative size of specimen-disc, disc diameter, and loading rate are needed more study, because these factors significantly affect the results of tensile strength. Improvement of the alignement between two discs and specimen in the UP test is also necessary to eliminate the error due to eccentrically loading.

  • PDF

Experimental and numerical investigation of arching effect in sand using modified Mohr Coulomb

  • Moradi, Golam;Abbasnejad, Alireza
    • Geomechanics and Engineering
    • /
    • v.8 no.6
    • /
    • pp.829-844
    • /
    • 2015
  • In the current paper the results of a numerical simulation that were verified by a well instrumented experimental procedure for studying the arching effect over a trapdoor in sand is presented. To simulate this phenomenon with continuum mechanics, the experimental procedure is modeled in ABAQUS code using stress dependent hardening in elastic state and plastic strain dependent frictional hardening-softening with Mohr Coulomb failure criterion applying user sub-routine. The apparatus comprises rectangular trapdoors with different width that can yield downward while stresses and deformations are recorded simultaneously. As the trapdoor starts to yield, the whole soil mass deforms elastically. However, after an immediate specified displacement, depending on the width of the trapdoor, the soil mass behaves plastically. This behavior of sand occurs due to the flow phenomenon and continues until the stress on trapdoor is minimized. Then the failure process develops in sand and the measured stress on the trapdoor shows an ascending trend. This indicates gradual separation of the yielding mass from the whole soil body. Finally, the flow process leads to establish a stable vault of sand called arching mechanism or progressive collapse of the soil body.

Failure analysis of tubes under multiaxial proportional and non-proportional loading paths

  • Mohammad Hossein Iji;Ali Nayebi
    • Steel and Composite Structures
    • /
    • v.47 no.2
    • /
    • pp.289-296
    • /
    • 2023
  • The failure of a thin-walled tube was studied in this paper based on three failure models. Both proportional and non-proportional loading paths were applied. Proportional loading consisted of combined tension-torsion. Cyclic non-proportional loading was also applied. It was a circular out-of-phase axial-shear stress loading path. The third loading path was a combination of a constant internal pressure and a bending moment. The failure models under study were equivalent plastic strain, modified Mohr-Coulomb (Bai-Wierzbicki) and Tearing parameter models. The elasto-plastic analysis was conducted using J2 criterion and nonlinear kinematic hardening. The return mapping algorithm was employed to numerically solve the plastic flow relations. The effects of the hydrostatic stress on the plastic flow and the stress triaxiality parameter on the failure were discussed. Each failure model under study was utilized to predict failure. The failure loads obtained from each model were compared with each other. The equivalent plastic strain model was independent from the stress triaxiality parameter, and it predicted the highest failure load in the bending problem. The modified Mohr-Coulomb failure model predicted the lowest failure load for the range of the stress triaxiality parameter and Lode's angle.

Coupling numerical modeling and machine-learning for back analysis of cantilever retaining wall failure

  • Amichai Mitelman;Gili Lifshitz Sherzer
    • Computers and Concrete
    • /
    • v.31 no.4
    • /
    • pp.307-314
    • /
    • 2023
  • In this paper we back-analyze a failure event of a 9 m high concrete cantilever wall subjected to earth loading. Granular soil was deposited into the space between the wall and a nearby rock slope. The wall segments were not designed to carry lateral earth loading and collapsed due to excessive bending. As many geotechnical programs rely on the Mohr-Coulomb (MC) criterion for elastoplastic analysis, it is useful to apply this failure criterion to the concrete material. Accordingly, the back-analysis is aimed to search for the suitable MC parameters of the concrete. For this study, we propose a methodology for accelerating the back-analysis task by automating the numerical modeling procedure and applying a machine-learning (ML) analysis on FE model results. Through this analysis it is found that the residual cohesion and friction angle have a highly significant impact on model results. Compared to traditional back-analysis studies where good agreement between model and reality are deemed successful based on a limited number of models, the current ML analysis demonstrate that a range of possible combinations of parameters can yield similar results. The proposed methodology can be modified for similar calibration and back-analysis tasks.

In situ horizontal stress effect on plastic zone around circular underground openings excavated in elastic zones

  • Komurlu, Eren;Kesimal, Ayhan;Hasanpour, Rohala
    • Geomechanics and Engineering
    • /
    • v.8 no.6
    • /
    • pp.783-799
    • /
    • 2015
  • In this study, effect of horizontal in situ stress on failure mechanism around underground openings excavated in isotropic, elastic rock zones is investigated. For estimating the plastic zone occurrence, an induced stress influence area approach (Bray Equations) was modified to define critical stress ratio according to the Mohr-Coulomb failure criterion. Results obtained from modified calculations were compared with results of some other analytical solutions for plastic zone thickness estimation and the numerical modelling (finite difference method software, FLAC2D) study. Plastic zone and its geometry around tunnels were analyzed for different in situ stress conditions. The modified equations gave similar results with those obtained from the other approaches. However, safer results were calculated using the modified equations for high in situ stress conditions and excessive ratio of horizontal to vertical in situ stresses. As the outcome of this study, the modified equations are suggested to use for estimating the plastic zone occurrence and its thickness around the tunnels with circular cross-section.

A modified RBSM for simulating the failure process of RC structures

  • Zhao, Chao;Zhong, Xingu;Liu, Bo;Shu, Xiaojuan;Shen, Mingyan
    • Computers and Concrete
    • /
    • v.21 no.2
    • /
    • pp.219-229
    • /
    • 2018
  • In this paper, a modified rigid body spring model (RBSM) is proposed and used to analyze the damage and failure process of reinforced concrete (RC) structures. In the proposed model, the concrete is represented by an assembly of rigid blocks connected with a uniform distribution of normal and tangential springs to simulate the macroscopic mechanical behavior of concrete. Steel bars are evenly dispersed into rigid blocks as a kind of homogeneous axial material, and an additional uniform distribution of axial and dowel springs is defined to consider the axial stiffness and dowel action of steel bars. Perfect bond between the concrete and steel bars is assumed, and tension stiffening effect of steel bars is modeled by adjusting the constitutive relationship for the tensile reinforcement. Adjacent blocks are allowed to separate at the contact interface, which makes it convenient and easy to simulate the cracking process of concrete. The failure of the springs is determined by the Mohr-Coulomb type criterion with the tension and compression caps. The effectiveness of the proposed method is confirmed by elastic analyses of a cantilever beam under different loading conditions and failure analyses of a RC beam under two-point loading.

Parallel computation for debonding process of externally FRP plated concrete

  • Xu, Tao;Zhang, Yongbin;Liang, Z.Z.;Tang, Chun-An;Zhao, Jian
    • Structural Engineering and Mechanics
    • /
    • v.38 no.6
    • /
    • pp.803-823
    • /
    • 2011
  • In this paper, the three dimensional Parallel Realistic Failure Process Analysis ($RFPA^{3D}$-Parallel) code based on micromechanical model is employed to investigate the bonding behavior in FRP sheet bonded to concrete in single shear test. In the model, the heterogeneity of brittle disordered material at a meso-scale was taken into consideration in order to realistically demonstrate the mechanical characteristics of FRP-to-concrete. Modified Mohr-coulomb strength criterion with tension cut-off, where a stressed element can damage in shear or in tension, was adopted and a stiffness degradation approach was used to simulate the initiation, propagation and growth of microcracks in the model. In addition, a Master-Slave parallel operation control technique was adopted to implement the parallel computation of a large numerical model. Parallel computational results of debonding of FRP-concrete visually reproduce the spatial and temporal debonding failure progression of microcracks in FRP sheet bonded to concrete, which agrees well with the existing testing results in laboratory. The numerical approach in this study provides a useful tool for enhancing our understanding of cracking and debonding failure process and mechanism of FRP-concrete and our ability to predict mechanical performance and reliability of these FRP sheet bonded to concrete structures.