• Title/Summary/Keyword: modified Kanai-Tajimi model

Search Result 1, Processing Time 0.014 seconds

AGV-induced floor micro-vibration assessment in LCD factories by using a regressional modified Kanai-Tajimi moving force model

  • Lee, C.L.;Su, R.K.L.;Wang, Y.P.
    • Structural Engineering and Mechanics
    • /
    • v.45 no.4
    • /
    • pp.543-568
    • /
    • 2013
  • This study explores the floor micro-vibrations induced by the automated guided vehicles (AGVs) in liquid-crystal-display (LCD) factories. The relationships between moving loads and both the vehicle weights and speeds were constructed by a modified Kanai-Tajimi (MKT) power spectral density (PSD) function whose best-fitting parameters were obtained through a regression analysis by using experimental acceleration responses of a small-scale three-span continuous beam model obtained in the laboratory. The AGV induced floor micro-vibrations under various AGV weights and speeds were then assessed by the proposed regressional MKT model. Simulation results indicate that the maximum floor micro-vibrations of the target LCD factory fall within the VC-B and VC-C levels when AGV moves at a lower speed of 1.0 m/s, while they may exceed the acceptable VC-B level when AGV moves at a higher speed of 1.5 m/s. The simulated floor micro-vibration levels are comparable to those of typical LCD factories induced by AGVs moving normally at a speed between 1.0 m/s and 2.0 m/s. Therefore, the numerical algorithm that integrates a simplified sub-structural multi-span continuous beam model and a proposed regressional MKT moving force model can provide a satisfactory prediction of AGV-induced floor micro-vibrations in LCD factories, if proper parameters of the MKT moving force model are adopted.