• 제목/요약/키워드: models & modeling

Search Result 4,733, Processing Time 0.204 seconds

Landscape Object Classification and Attribute Information System for Standardizing Landscape BIM Library (조경 BIM 라이브러리 표준화를 위한 조경객체 및 속성정보 분류체계)

  • Kim, Bok-Young
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.2
    • /
    • pp.103-119
    • /
    • 2023
  • Since the Korean government has decided to apply the policy of BIM (Building Information Modeling) to the entire construction industry, it has experienced a positive trend in adoption and utilization. BIM can reduce workloads by building model objects into libraries that conform to standards and enable consistent quality, data integrity, and compatibility. In the domestic architecture, civil engineering, and the overseas landscape architecture sectors, many BIM library standardization studies have been conducted, and guidelines have been established based on them. Currently, basic research and attempts to introduce BIM are being made in Korean landscape architecture field, but the diffusion has been delayed due to difficulties in application. This can be addressed by enhancing the efficiency of BIM work using standardized libraries. Therefore, this study aims to provide a starting point for discussions and present a classification system for objects and attribute information that can be referred to when creating landscape libraries in practice. The standardization of landscape BIM library was explored from two directions: object classification and attribute information items. First, the Korean construction information classification system, product inventory classification system, landscape design and construction standards, and BIM object classification of the NLA (Norwegian Association of Landscape Architects) were referred to classify landscape objects. As a result, the objects were divided into 12 subcategories, including 'trees', 'shrubs', 'ground cover and others', 'outdoor installation', 'outdoor lighting facility', 'stairs and ramp', 'outdoor wall', 'outdoor structure', 'pavement', 'curb', 'irrigation', and 'drainage' under five major categories: 'landscape plant', 'landscape facility', 'landscape structure', 'landscape pavement', and 'irrigation and drainage'. Next, the attribute information for the objects was extracted and structured. To do this, the common attribute information items of the KBIMS (Korean BIM Standard) were included, and the object attribute information items that vary according to the type of objects were included by referring to the PDT (Product Data Template) of the LI (UK Landscape Institute). As a result, the common attributes included information on 'identification', 'distribution', 'classification', and 'manufacture and supply' information, while the object attributes included information on 'naming', 'specifications', 'installation or construction', 'performance', 'sustainability', and 'operations and maintenance'. The significance of this study lies in establishing the foundation for the introduction of landscape BIM through the standardization of library objects, which will enhance the efficiency of modeling tasks and improve the data consistency of BIM models across various disciplines in the construction industry.

Impact Assessment of Agricultural Reservoir on Streamflow Simulation Using Semi-distributed Hydrologic Model (준분포형 모형을 이용한 농업용 저수지가 안성천 유역의 유출모의에 미치는 영향 평가)

  • Kim, Bo Kyung;Kim, Byung Sik;Kwon, Hyun Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1B
    • /
    • pp.11-22
    • /
    • 2009
  • Long-term rainfall-runoff modeling is a key element in the Earth's hydrological cycle, and associated with many different aspects such as dam design, drought management, river management flow, reservoir management for water supply, water right permission or coordinate, water quality prediction. In this regard, hydrologists have used the hydrologic models for design criteria, water resources assessment, planning and management as a main tool. Most of rainfall-runoff studies, however, were not carefully performed in terms of considering reservoir effects. In particular, the downstream where is severely affected by reservoir was poorly dealt in modeling rainfall-runoff process. Moreover, the effects can considerably affect overall the rainfallrunoff process. An objective of this study, thus, is to evaluate the impact of reservoir operation on rainfall-runoff process. The proposed approach is applied to Anseong watershed, where is in a mixed rural/urban setting of the area and in Korea, and has been experienced by flood damage due to heavy rainfall. It has been greatly paid attention to the agricultural reservoirs in terms of flood protection in Korea. To further investigate the reservoir effects, a comprehensive assessment for the results are discussed. Results of simulations that included reservoir in the model showed the effect of storage appeared in spring and autumn when rainfall was not concentrated. In periods of heavy rainfall, however, downstream runoff increased in simulations that do not consider reservoir factor. Flow duration curve showed that changes in streamflow depending upon the presence or absence of reservoir factor were particularly noticeable in ninety-five day flow and low flow.

The Effect of Mentoring on the Mentor's Job Satisfaction: Mediating Effects of Personal Learning and Self-efficacy (멘토링이 멘토의 직무만족도에 미치는 영향: 개인학습 및 자기효능감의 매개효과)

  • Lee, In Hong;Dong, Hak Lim
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.3
    • /
    • pp.157-172
    • /
    • 2023
  • The recent Fourth Industrial Revolution is accelerating changes due to digital transformation. According to this trend, the existing start-up paradigm is changing, and new business models based on new technologies and creative ideas are emerging. In addition, the diversity of mentoring relationships and environments such as online mentoring, reverse mentoring, group mentoring, and multiple mentoring is also increasing. However, most mentors in their 50s and 60s, who are mainly active in the start-up field, have been able to help mentees a lot based on their own experience and expertise, but they are having difficulty responding to the changing environment due to a lack of understanding and experience of new technologies and environments. To cope with these changes well, mentors must constantly study, acquire and apply the latest technologies to improve their understanding of new technologies and the environment. In addition, it is necessary to have an understanding and respect for the diversity of mentoring relationships and environments, and to maximize the effectiveness of mentoring by actively utilizing them. Therefore, mentors should recognize that they directly affect the growth and development of mentees, constantly acquire new knowledge and skills to maintain and develop expertise, and actively deliver their knowledge and experiences to mentees. Therefore, in this study, was tried to empirically analyze the relationship between mentoring's influence on mentor's job satisfaction through mentor's personal learning and self-efficacy. The results of the empirical analysis were as follows. Among the functions of mentoring, career function and role modeling were found to have a positive effect on both personal learning and self-efficacy, which are parameters, and job satisfaction, which is a dependent variable. On the other hand, psychological and social functions have a positive effect on personal learning, but they do not have an effect on self-efficacy and job satisfaction. In addition, as a result of analyzing the mediating effect, all mediating effects were confirmed for career functions, and only the mediating effect of self-efficacy was confirmed for role modeling. Through this study, mentoring is an important factor in promoting job satisfaction, personal learning and self-efficacy, and this study can be said to be academically and practically meaningful in that it confirmed personal learning and self-efficacy as factors that increase mentor's job satisfaction, and the focus of mentoring research was shifted from mentee to mentor to study the impact of mentoring on mentors.

  • PDF

A Study of Feasibility of Dipole-dipole Electric Method to Metallic Ore-deposit Exploration in Korea (국내 금속광 탐사를 위한 쌍극자-쌍극자 전기탐사의 적용성 연구)

  • Min, Dong-Joo;Jung, Hyun-Key;Park, Sam-Gyu;Chon, Hyo-Taek;Kwak, Na-Eun
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.3
    • /
    • pp.250-262
    • /
    • 2008
  • In order to assess the feasibility of the dipole-dipole electric method to the investigation of metallic ore deposit, both field data simulation and inversion are carried out for several simplified ore deposit models. Our interest is in a vein-type model, because most of the ore deposits (more than 70%) exist in a vein type in Korea. Based on the fact that the width of the vein-type ore deposits ranges from tens of centimeters to 2m, we change the width and the material property of the vein, and we use 40m-electrode spacing for our test. For the vein-type model with too small width, the low resistivity zone is not detected, even though the resistivity of the vein amounts to 1/300 of that of the surrounding rock. Considering a wide electrode interval and cell size used in the inversion, it is natural that the size of the low resistivity zone is overestimated. We also perform field data simulation and inversion for a vein-type model with surrounding hydrothermal alteration zones, which is a typical structure in an epithermal ore deposits. In the model, the material properties are assumed on the basis of resistivity values directly observed in a mine originated from an epithermal ore deposits. From this simulation, we can also note that the high resistivity value of the vein does not affect the results when the width of the vein is narrow. This indicates that our main target should be surrounding hydrothermal alteration zones rather than veins in field survey. From these results, we can summarize that when the vein is placed at the deep part and the difference of resistivity values between the vein and the surrounding rock is not large enough, we cannot detect low resistivity zone and interpret the subsurface structures incorrectly using the electric method performed at the surface. Although this work is a little simple, it can be used as references for field survey design and field data Interpretation. If we perform field data simulation and inversion for a number of models and provide some references, they will be helpful in real field survey and interpretation.

Using a Learning Progression to Characterize Korean Secondary Students' Knowledge and Submicroscopic Representations of the Particle Nature of Matter (Learning Progression을 적용한 중·고등학생의 '물질의 입자성'에 관한 지식과 미시적 표상에 대한 특성 분석)

  • Shin, Namsoo;Koh, Eun Jung;Choi, Chui Im;Jeong, Dae Hong
    • Journal of The Korean Association For Science Education
    • /
    • v.34 no.5
    • /
    • pp.437-447
    • /
    • 2014
  • Learning progressions (LP), which describe how students may develop more sophisticated understanding over a defined period of time, can inform the design of instructional materials and assessment by providing a coherent, systematic measure of what can be regarded as "level appropriate." We developed LPs for the nature of matter for grades K-16. In order to empirically test Korean students, we revised one of the constructs and associated assessment items based on Korean National Science Standards. The assessment was administered to 124 Korean secondary students to measure their knowledge and submicroscopic representations, and to assign them to a level of learning progression for the particle nature of matter. We characterized the level of students' understanding and models of the particle nature of matter, and described how students interpret various representations of atoms and molecules to explain scientific phenomena. The results revealed that students have difficulties in understanding the relationship between the macroscopic and molecular levels of phenomena, even in high school science. Their difficulties may be attributed to a limited understanding of scientific modeling, a lack of understanding of the models used to represent the particle nature of matter, or limited understanding of the structure of matter. This work will inform assessment and curriculum materials development related to the fundamental relationship between macroscopic, observed phenomena and the behavior of atoms and molecules, and can be used to create individualized learning environments. In addition, the results contribute to scientific research literature on learning progressions on the nature of matter.

Development of Drawing & Specification Management System Using 3D Object-based Product Model (3차원 객체기반 모델을 이용한 설계도면 및 시방서관리 시스템 구축)

  • Kim Hyun-nam;Wang Il-kook;Chin Sang-yoon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.1 no.3 s.3
    • /
    • pp.124-134
    • /
    • 2000
  • In construction projects, the design information, which should contain accurate product information in a systematic way, needs to be applicable through the life-cycle of projects. However, paper-based 2D drawings and relevant documents has difficulties in communicating and sharing the owner's and architect's intention and requirement effectively and building a corporate knowledge base through on-going projects due to Tack of interoperability between specific task or function-oriented software and handling massive information. Meanwhile, computer and information technologies are being developed so rapidly that the practitioners are even hard to adapt them into the industry efficiently. 3D modeling capabilities in CAD systems are enormously developed and enables users to associate 3D models with other relevant information. However, this still requires a great deal of efforts and costs to have all the design information represented in CAD system, and the sophisticated system is difficult to manage. This research focuses on the transition period from 2D-based design Information management to 3D-based, which means co-existence of 2D and 3D-based management. This research proposes a model of a compound system of 2D and 3D-based CAD system which presents the general design information using 3D model integrating with 2D CAD drawings for detailed design information. This research developed an integrated information management system for design and specification by associating 2D drawings and 3D models, where 2D drawings represents detailed design and parts that are hard to express in 3D objects. To do this, related management processes was analyzed to build an information model which in turn became the basis of the integrated information management system.

  • PDF

Evaluation of Beam Modeling Using Collapsed Cone Convolution Algorithm for Dose Calculation in Radiation Treatment Planning System (방사선치료계획시스템의 Collapsed Cone Convolution 선량계산 알고리듬을 이용한 빔 모델링의 정확성 평가)

  • Jung, Joo-Young;Cho, Woong;Kim, Min-Joo;Lee, Jeong-Woo;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.23 no.3
    • /
    • pp.188-198
    • /
    • 2012
  • This study aims to evaluate the accuracy of the collapsed cone convolution (CCC) algorithm for dose calculation in a treatment planning system (TPS), CorePLAN$^{TM}$. We implemented beam models for various setup conditions in TPS and calculated radiation dose using CCC algorithm for 6 MV and 15 MV photon beam in $50{\times}50{\times}50cm^3$ water phantom. Field sizes were $4{\times}4cm^2$, $6{\times}6cm^2$, $10{\times}10cm^2$, $20{\times}20cm^2$, $30{\times}30cm^2$ and $40{\times}40cm^2$ and each case was classified as open beam cases and wedged beam cases, respectively. Generated beam models were evaluated by comparing calculated data and measured data of percent depth dose (PDD) and lateral profile. As a result, PDD showed good agreement within approximately 2% in open beam cases and 3% in wedged beam cases except for build-up region and lateral profile also correspond within approximately 1% in field and 4% in penumbra region. On the other hand, the discrepancies were found approximately 4% in wedged beam cases. This study has demonstrated the accuracy of beam model-based CCC algorithm in CorePLAN$^{TM}$ and the most of results from this study were acceptable according to international standards. Although, the area with large dose difference shown in this study was not significant region in clinical field, the result of our study would open the possibility to apply CorePLAN$^{TM}$ into clinical field.

Stress dissipation characteristics of four implant thread designs evaluated by 3D finite element modeling (4종 임플란트 나사산 디자인의 응력분산 특성에 대한 3차원 유한요소해석 연구)

  • Nam, Ok-Hyun;Yu, Won-Jae;Kyung, Hee-Moon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.53 no.2
    • /
    • pp.120-127
    • /
    • 2015
  • Purpose: The aim was to investigate the effect of implant thread designs on the stress dissipation of the implant. Materials and methods: The threads evaluated in this study included the V-shaped, buttress, reverse buttress, and square-shaped threads, which were of the same size (depth). Building four different implant/bone complexes each consisting of an implant with one of the 4 different threads on its cylindrical body ($4.1mm{\times}10mm$), a force of 100 N was applied onto the top of implant abutment at $30^{\circ}$ with the implant axis. In order to simulate different osseointegration stages at the implant/bone interfaces, a nonlinear contact condition was used to simulate immature osseointegration and a bonding condition for mature osseointegration states. Results: Stress distribution pattern around the implant differed depending on the osseointegration states. Stress levels as well as the differences in the stress between the analysis models (with different threads) were higher in the case of the immature osseointegration state. Both the stress levels and the differences between analysis models became lower at the completely osseointegrated state. Stress dissipation characteristics of the V-shape thread was in the middle of the four threads in both the immature and mature states of osseointegration. These results indicated that implant thread design may have biomechanical impact on the implant bed bone until the osseointegration process has been finished. Conclusion: The stress dissipation characteristics of V-shape thread was in the middle of the four threads in both the immature and mature states of osseointegration.

Multi-task Learning Based Tropical Cyclone Intensity Monitoring and Forecasting through Fusion of Geostationary Satellite Data and Numerical Forecasting Model Output (정지궤도 기상위성 및 수치예보모델 융합을 통한 Multi-task Learning 기반 태풍 강도 실시간 추정 및 예측)

  • Lee, Juhyun;Yoo, Cheolhee;Im, Jungho;Shin, Yeji;Cho, Dongjin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_3
    • /
    • pp.1037-1051
    • /
    • 2020
  • The accurate monitoring and forecasting of the intensity of tropical cyclones (TCs) are able to effectively reduce the overall costs of disaster management. In this study, we proposed a multi-task learning (MTL) based deep learning model for real-time TC intensity estimation and forecasting with the lead time of 6-12 hours following the event, based on the fusion of geostationary satellite images and numerical forecast model output. A total of 142 TCs which developed in the Northwest Pacific from 2011 to 2016 were used in this study. The Communications system, the Ocean and Meteorological Satellite (COMS) Meteorological Imager (MI) data were used to extract the images of typhoons, and the Climate Forecast System version 2 (CFSv2) provided by the National Center of Environmental Prediction (NCEP) was employed to extract air and ocean forecasting data. This study suggested two schemes with different input variables to the MTL models. Scheme 1 used only satellite-based input data while scheme 2 used both satellite images and numerical forecast modeling. As a result of real-time TC intensity estimation, Both schemes exhibited similar performance. For TC intensity forecasting with the lead time of 6 and 12 hours, scheme 2 improved the performance by 13% and 16%, respectively, in terms of the root mean squared error (RMSE) when compared to scheme 1. Relative root mean squared errors(rRMSE) for most intensity levels were lessthan 30%. The lower mean absolute error (MAE) and RMSE were found for the lower intensity levels of TCs. In the test results of the typhoon HALONG in 2014, scheme 1 tended to overestimate the intensity by about 20 kts at the early development stage. Scheme 2 slightly reduced the error, resulting in an overestimation by about 5 kts. The MTL models reduced the computational cost about 300% when compared to the single-tasking model, which suggested the feasibility of the rapid production of TC intensity forecasts.

Classification of Domestic Freight Data and Application for Network Models in the Era of 'Government 3.0' ('정부 3.0' 시대를 맞이한 국내 화물 자료의 집계 수준에 따른 분류체계 구축 및 네트워크 모형 적용방안)

  • YOO, Han Sol;KIM, Nam Seok
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.4
    • /
    • pp.379-392
    • /
    • 2015
  • Freight flow data in Korea has been collected for a variety of purposes by various organizations. However, since the representation and format of the data varies, it has not been substantially used for freight analyses and furthermore for freight policies. In order to increase the applicability of those data sets, it is required to bring them in a table and compare for finding the differences. Then, it is shown that the raw data can be aggregated by a particular criterion such as mode, origin and destination, and type commodity. This study aims to examine the freight data issue in terms of three different points of view. First, we investigated various freight volume data sets which are released by several organizations. Second, we tried to develop formulations for freight volume data. Third, we discussed how to apply the formulations to network models in which particular OR (Operations Research) techniques are used. The results emphasized that some data might be useless for modeling once they are aggregated. As a result of examining the freight volume data, this study found that 14 organizations share their data sets at various aggregation levels. This study is not an ordinary research article, which normally includes data analysis, because it seems to be impossible to conduct extensive case studies. The reason is that the data dealt in this study are diverse. Nevertheless, this study might guide the research direction in the freight transport research society in terms of data issue. Especially, it can be concluded that this study is a timely research because the governmemt has emphasized the importance of sharing data to public throughout 'government 3.0' for research purpose.