The Transactions of The Korean Institute of Electrical Engineers
/
v.60
no.7
/
pp.1360-1365
/
2011
Electro-hydraulic servo motor is used to a lot of in the field of industrial equipment which requires one of the control functions among pressure, flow, and power output. In this paper, linear discrete reference model of the electro-hydraulic servo motor system are made for 1-step ahead predictive control. The parameters of electro-hydraulic servo motor system are estimated using the recursive least square method. 1-step ahead predictive model output of electro-hydraulic servo motor system corresponded to reference model output in spite of estimated parameters are not meet real parameters. Control performance affections are studied due to the forgetting factors variation.
In industry, the speed control of single-phase induction motor in domestic use is generally controlled by a simple ON-OFF or PID control method. However, in this case, in order to have a good speed regulating characteristics, itself should be modified in accordance with the optimum PID factors which are varied each time operating speed changes. Shortening the development time and saving the cost which are needed to modify the controller is a major problem to be solved now in industry. In order to alleviate the above difficulties, it is proposed to apply adaptive control technique using MRFAC(Model Reference Following Adaptive Control) for the speed control of single-phase induction motor which has scarcely been studied. In this paper, the above speed control technique is achieved using MCS-96 one chip micro controller with a good speed control characteristics and it is expetted to open a wide application field in the speed control of single-phase induction motor in the future.
In a simple system, the control schemes work well provided that the characteristic of the plant or the coefficients are known and fixed. But the condition is not met in the system like satellite, for example, varying over time and the coefficients of dynamic system change due to disturbance, etc, and the better precise model is required to control the given dynamic system well. Conversely, the fixed controller make the unmodel dynamic system with a wide class of modelling error be stable within the error tolerance limits. Also, a robust model reference adaptive control scheme is designed for the plant, paying attention to the derivation of the appropriate parametric model and the design of the normalizing signal to guarantee that it has the desired properties.
Proceedings of the Korean Society for Noise and Vibration Engineering Conference
/
2000.11a
/
pp.437-442
/
2000
An alternative inverse feedback structure for adaptive active control of periodic noise is introduced for systems with nonminimum phase cancellation path. To obtain the inverse model of the nonminimum phase cancellation path, the cancellation path model can be factorized into a minimum phase term and a maximum phase term. The maximum phase term containing unstable zeros makes the inverse model unstable. To avoid the instability, we alter the inverse model of the maximum phase system into an anti-causal FIR one. An LMS predictor estimates the future samples of the noise, which are necessary for causality of both anti-causal FIR approximation for the stable inverse of the maximum phase system and time-delay existing in the cancellation path. The proposed method has a faster convergence behavior and a better transient response than the conventional FX-LMS algorithms with the same internal model control structure since a filtered reference signal is not required. We compare the proposed methods with the conventional methods through simulation studies.
Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
/
v.20
no.3
/
pp.53-61
/
2006
This paper is proposed adaptive fuzzy-neuro controller for high performance of induction motor drive. The design of this algorithm based on fuzzy-neural network controller that is implemented using fuzzy control and neural network. This controller uses fuzzy nile as training patterns of a neural network. Also, this controller uses the back-propagation method to adjust the weights between the neurons of neural network in order to minimize the error between the command output and actual output. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the adaptive fuzzy-neuro controller is evaluated by analysis for various operating conditions. The results of experiment prove that the proposed control system has strong high performance and robustness to parameter variation, and steady-state accuracy and transient response.
Journal of the Korean Society of Industry Convergence
/
v.2
no.2
/
pp.91-102
/
1999
The paper describes a robust adaptive control algorithm for induction motor drive without speed sensor at low speed range. The control algorithm use only current sensors in a space vector pulse width modulation within loop control with rotor speed estimation and voltage source inverter. On-line rotor speed estimation is based on utilizing parallel model reference adaptive control system. MRAC of the modified flux model for flux and rotor speed estimator uses dual-adaptation mechanism, ${\omega}_r$ and ${\omega}_e$ scheme. The estimated flux components in the model can be compensated from the effects of offset errors on pure integrals. It can be compensated to the parameter variations and torque fluctuation with speed estimation in less then 10 rad/sec. In a simulation, the proposed induction motor control algorithm without speed sensor at very low speed range are shown to operate very well in spite of variable rotor time constant and fluctuating load without change the controller parameters. The suggested control strategy and estimation method have been validated by simulation study, and it proposed the designed system for the implementation using TI320C31 DSP/ASIC controller.
A new control method for the robust position control of a brushless DC(BLDC) motor using the asymptotically stable adaptive load torque observer is presented. A precision position control is obtained for the BLDC motor system approximately linearized using the field-orientation method. And the application of the load torque observer is published in [1] using fixed gain. However, the flux linkage is not exactly known for a load torque observer. Therefore, a model reference adaptive observer is considered to overcome the problem of the unknown parameter in this paper. And stability analysis is carried out using Liapunov stability theorem. As a result, asymptotically stable observer gain can be obtained without affecting the overall system response. The load disturbance detected by the asymptotically stable adaptive observer is compensated by feedforwarding the equivalent current having the fast response.
This paper presents to control speed of induction motors with uncertainties. We use an adaptive backstepping controller with fuzzy neural networks(FNNs) and model reference adaptive system(MRAS) at Indirect vector control method. The adaptive backstepping controller using FNNs can control speed of induction motors even we have a minimum of information. And this controller can be used to approximate most of uncertainties which are derived from unknown motor parameters, load torque such as disturbances. MRAS estimates to rotor resistance and also can find optimal flux to minimize power losses of Induction motor. Indirect vector PI current controller is used to keep rotor flux constant without measuring or estimating the rotor flux. Simulation and experiment results are verified the effectiveness of this proposed approach.
Transactions of the Korean Society of Mechanical Engineers
/
v.15
no.2
/
pp.463-477
/
1991
This study proposed a new method to design a robot manipulator control system capable of tracking the trajectories of joint angles in a reasonable accuracy to cover with actual situation of varying payload, uncertain parameters, and time delay. The direct adaptive model following control method has been used to improve existing industrial robot manipulator control system design. The proposed robot manipulator controller is operated by adjusting its gains based on the response of the manipulator in such a way that the manipulator closely matches the reference model trajectories predefined by the designer. The manipulator control system studied has two loops: they are an inner loop on adaptive model following controller to compensate nonlinearity in the manipulator dynamic equation and to decouple the coupling terms and an outer loop of state feedback controller with integral action to guarantee the stability of the adaptive scheme. This adaptation algorithm is based on the hyperstability approach with an improved Lyapunov function. The coupling among joints and the nonlinearity in the dynamic equation are explicitly considered. The designed manipulator controller shows good tracking performance in various cases, load variation, parameter uncertainties. and time delay. Since the proposed adaptive control method requires only a small number of parameters to be estimated, the controller has a relatively simple structure compared to the other adaptive manipulator controllers. Therefore, the method used is expected to be well suited for a high performance robot controller under practical operation environments.
In this paper an effective direct torque control (DTC) and stator flux control is developed for a quasi six-phase induction motor (QIM) drive with sinusoidally distributed windings. Combining sliding-mode (SM) control and adaptive input-output feedback linearization, a nonlinear controller is designed in the stationary reference frame, which is capable of tracking control of the stator flux and torque independently. The motor controllers are designed in order to track a desired second order linear reference model in spite of motor resistances mismatching. The effectiveness and capability of the proposed method is shown by practical results obtained for a QIM supplied from a voltage source inverter (VSI).
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.