• Title/Summary/Keyword: model-free

Search Result 4,175, Processing Time 0.033 seconds

Development of a Cycle-free Based, Coordinated Dynamic Signal Timing Model for Minimizing Queue-Lengths (Using Genetic Algorithm) (대기차량 최소화를 위한 주기변동기반 (Cycle-free based) 동적 신호시간 결정모형 개발)

  • 이영인;임재승;윤경섭
    • Journal of Korean Society of Transportation
    • /
    • v.18 no.2
    • /
    • pp.73-89
    • /
    • 2000
  • This Paper documents the development of a cycle free based, coordinated dynamic signal timing model for minimizing queue lengths using Genetic A1gorithm. The model was embodied using MAT-LAB, the language of technical computing. A special feature of this model is its ability to manage queue lengths of turning movements at the start of green times. The model produces a cycle-free based signal timing(cycles and green times) for each intersection to minimize queue lengths of turning movements on the cycle basis. Concurrently, appropriate offsets could be accomplished by applying cycle-free based signal timings for respective intersections. The model was applied to an example network which consists of three intersections. The result shows that the model produces superior signal timings to the existing signal timing model in terms of managing queue lengths of turning movements.

  • PDF

PREDICTION OF FREE SURFACE FLOW ON CONTAINMENT FLOOR USING A SHALLOW WATER EQUATION SOLVER

  • Bang, Young-Seok;Lee, Gil-Soo;Huh, Byung-Gil;Oh, Deog-Yeon;Woo, Sweng-Woong
    • Nuclear Engineering and Technology
    • /
    • v.41 no.8
    • /
    • pp.1045-1052
    • /
    • 2009
  • A calculation model is developed to predict the transient free surface flow on the containment floor following a loss-of-coolant accident (LOCA) of pressurized water reactors (PWR) for the use of debris transport evaluation. The model solves the two-dimensional Shallow Water Equation (SWE) using a finite volume method (FVM) with unstructured triangular meshes. The numerical scheme is based on a fully explicit predictor-corrector method to achieve a fast-running capability and numerical accuracy. The Harten-Lax-van Leer (HLL) scheme is used to reserve a shock-capturing capability in determining the convective flux term at the cell interface where the dry-to-wet changing proceeds. An experiment simulating a sudden break of a water reservoir with L-shape open channel is calculated for validation of the present model. It is shown that the present model agrees well with the experiment data, thus it can be justified for the free surface flow with accuracy. From the calculation of flow field over the simplified containment floor of APR1400, the important phenomena of free surface flow including propagations and interactions of waves generated by local water level distribution and reflection with a solid wall are found and the transient flow rates entering the Holdup Volume Tank (HVT) are obtained within a practical computational resource.

Prediction Model of Propagation Path Loss of the Free Space in the Sea (해수면 자유공간의 전파경로손실 예측 모델)

  • 류광진;박창균
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.7
    • /
    • pp.579-584
    • /
    • 2003
  • All of propagation path loss prediction models, which have been presented up to date, are oかy for ground living space. In reality, sea surface free space is different from ground living space in physical hierarchical structure. If the propagation path prediction model for ground living space is applied to the sea surface free space, propagation path loss will be smaller than actual value, while the maximum service straight line will become shorter. Thus this paper proposed and simulated the propagation path loss prediction model for predicting propagation path loss more accurately in sea surface free space, with its focus on CDMA mobile communication frequency band. Then the simulation results were compared to actual survey to verify its practicality.

A Numerical Analysis of Gravity and Free Surface Effects on a Two-Dimensional Supercavitating Flow (2차원 초공동 유동의 중력과 자유표면 효과에 대한 수치해석)

  • Kim, Hyoung-Tae;Lee, Hyun-Bae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.5
    • /
    • pp.435-449
    • /
    • 2014
  • The effects of the gravity field and the free surface on the cavity shape and the drag are investigated through a numerical analysis for the steady supercavitating flow past a simple two-dimensional body underneath the free surface. The continuity and the RANS equations are numerically solved for an incompressible fluid using a $k-{\epsilon}$ turbulence model and a mixture fluid model has been applied for calculating the multiphase flow of air, water and vapor using the method of volume of fluid and the Schnerr-Sauer cavitation model. Numerical solutions have been obtained for the supercavitating flow about a two-dimensional $30^{\circ}$ wedge in wide range of depths of submergence and inflow velocities. The results are presented for the cavity shape, especially the length and the width, and the drag of the wedge in comparison with those of the case for the infinite fluid flow neglecting the gravity and the free surface. The influences of the gravity field and the free surface on the aforementioned quantities are discussed. The length and the width of the supercavity are reduced and the centerline of the cavity rises toward the free surface due to the effects of the gravity field and the free surface. The drag coefficient of the wedge, however, is about the same except for shallow depths of submergence. As the supercavitating wedge is approaching very close to the free surface, it is found the length and the width of a cavity are shorten even though the cavitation number is reduced. Also the present result suggests that, under the influence of the gravity field and the free surface, the length of the supercavity for a certain cavitation number varies and moreover is proportional to the inverse of the submergence depth Froude number.

A racking Design of the Monitor by Considering the Free Drop Impact (자유낙하 충돌을 고려한 모니터 포장설계)

  • Yun Seong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.12 s.177
    • /
    • pp.117-123
    • /
    • 2005
  • This paper deals with the finite element model of the monitor fur the simulation of directional free drop tests such as the backward and vertex free drop as well as the associated free-drop experiment. The model was made for an unconditional stable solution fur the explicit integration algorithm. It was found through the comparison between simulation and experimental results that the general behaviors at the time of impact were observed to well correlate with each other in terms of acceleration, displacement, contact force and stress of monitor components.

A Study on the Automatic Elimination of Free Edge for Sheet Metal Forming Analysis (박판성형해석을 위한 자동 프리에지 제거에 관한 연구)

  • 유동진
    • Transactions of Materials Processing
    • /
    • v.13 no.7
    • /
    • pp.614-622
    • /
    • 2004
  • A new approach for the automatic elimination of free edges in the finite element model for the analysis of sheet metal forming processes is presented. In general, the raw finite element model constructed from an automatic mesh generator is not well suited for the direct use in the downstream forming analysis due to the many free edges which requires tedious time consuming interactive graphic operations of the users. In the present study, a general method for the automatic elimination of free edges is proposed by introducing a CAD/CAE hybrid method. In the method a trimmed parametric surface is generated to fill the holes which are orginated from the free edges by using the one step elastic finite element analysis. In addition, mesh generation algorithm is suggested which can be used in the general trimmed surface. In order to verify the validity of the proposed method, various examples including actual automobile sheet metal parts are given and discussed.

Numerical Investigation of Anti-Diffusion Source Term for Free-Surface Wave Flow

  • Park, Sunho;Lee, Heebum;Rhee, Shin Hyung
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.2 no.2
    • /
    • pp.48-60
    • /
    • 2016
  • Accurate simulation of free-surface wave flows around a ship is very important for better hull-form design. In this paper, a computational fluid dynamics (CFD) code which is based on the open source libraries, OpenFOAM, was developed to predict the wave patterns around a ship. Additional anti-diffusion source term for minimizing a numerical diffusion, which was caused by convection differencing scheme, was considered in the volume-fraction transport equation. The influence of the anti-diffusion source term was tested by applying it to free-surface wave flow around the Wigley and KCS model ships. In results, the wave patterns and hull wave profiles of the Wigley and KCS model ships for various anti-diffusion coefficients showed quite close patterns. While, the band width of the water volume-fraction values between 0.1 to 0.9 at the Wigley and KCS model hull surfaces was narrowed by considering the anti-diffusion term. From the results, anti-diffusion source term decreased free-surface smearing.

NUMERICAL ANALYSIS OF VENTILATED CAVITATION WITH FREE SURFACE EFFECTS (자유표면 영향을 고려한 환기공동 전산유동해석)

  • Jin, M.S.;Kim, H.Y.;Ha, C.T.;Park, W.G.
    • Journal of computational fluids engineering
    • /
    • v.18 no.1
    • /
    • pp.13-21
    • /
    • 2013
  • Cavitating flow is usually formed on the surface of a high speed underwater object. When a object moves near a free surface at very high speed, the cavity signature becomes one of the major factors to be overcome by sensors of military satellite. The present work was to study the free surface effect on the ventilated cavitation. The governing equations were Navier-Stokes equations based on a homogeneous mixture model. The multiphase flow solver used an implicit preconditioning method in the curvilinear coordinate system. The cavitation model used here was the one first presented by Merkle et al.(2006) and redeveloped by Park & Ha(2009). Computations considered the free surface effects were carried out with a NACA0012 hydrofoil and the corresponding results were compared with the experimental data to have a good agreement. Calculations were then performed considering the ventilated cavitation, including the effect of non-condensable gas under the free surface effects.

The Research focusing on the Goal-directed Behavior of Duty Free Shop Users (면세점 이용객들의 목표지향적 행동에 관한 연구)

  • Choi, Yu-Jin;Park, Jin-Woo
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.4
    • /
    • pp.73-81
    • /
    • 2015
  • The purpose of this study is to explore structural relationship between cognitive factors and emotional factors in predicting behavioral intention of duty-free users. This study conducted questionnaire survey on 246 users of duty-free shops and analyzed it by using structural equation. As the result of the study, attitude was significantly associated with both desire and behavioral intention. Subjective norm had a significant impact on desire, but had no significant imfact on behavioral intention. Whereas perceived behavioral control did not have a significant influence on desire and intention. Desire, which plays mediating role as a major variable in goal-directed behavioral model, turned out to not only have significant impact on behavioral intention but has the strongest effect as well. This study has its academic meaning in that it explored factors which have effect on decision-making process of duty-free users focusing on goal-oriented behavioral model, which is one of integrated psychological models. In practical terms, this study can be used as a basic material for corporations to establish goals in domestic duty-free shops.

Free vibration analysis of power-law and sigmoidal sandwich FG plates using refined zigzag theory

  • Aman Garg;Simmi Gupta;Hanuman D. Chalak;Mohamed-Ouejdi Belarbi;Abdelouahed Tounsi;Li Li;A.M. Zenkour
    • Advances in materials Research
    • /
    • v.12 no.1
    • /
    • pp.43-65
    • /
    • 2023
  • Free vibration analysis of power law and sigmoidal sandwich plates made up of functionally graded materials (FGMs) has been carried out using finite element based higher-order zigzag theory. The present model satisfies all-important conditions such as transverse shear stress-free conditions at the plate's top and bottom surface along with continuity condition for transverse stresses at the interface. A Nine-noded C0 finite element having eleven degrees of freedom per node is used during the study. The present model is free from the requirement of any penalty function or post-processing technique and hence is computationally efficient. The present model's effectiveness is demonstrated by comparing the present results with available results in the literature. Several new results have been proposed in the present work, which will serve as a benchmark for future works. It has been observed that the material variation law, power-law exponent, skew angle, and boundary condition of the plate widely determines the free vibration behavior of sandwich functionally graded (FG) plate.