• 제목/요약/키워드: model-based recommender system

검색결과 93건 처리시간 0.022초

DeLone과 McLean의 정보시스템 성공 모형을 통한 추천시스템 성공 요인 재구성 (Reconfiguration of Recommender System Success with DeLone and McLean's Model of IS Success)

  • 권오병
    • 지식경영연구
    • /
    • 제11권4호
    • /
    • pp.21-39
    • /
    • 2010
  • Recommender system is a core component of e-commerce. Correspondingly, metrics to evaluate the system performance have been developed and applied. However, even though we have lots of applications that have tried to adopt recommender systems, the dearth of successfully installed recommender systems for more than a decade leads us to a skeptical thinking that current metrics do not sufficiently indicate the recommender system success in business viability point of view. Hence, the purpose of this paper is to reconfigure measures for recommender system success. Adopting DeLone and McLean's amended model of information system success as the underlying framework, content analysis with intellectual properties on recommender systems was conducted to modify the currently used metrics. Then a model of recommender system success is proposed based on the newly identified metrics are compared with traditional metrics.

  • PDF

협업필터링과 스태킹 모형을 이용한 상품추천시스템 개발 (Development of Product Recommender System using Collaborative Filtering and Stacking Model)

  • 박성종;김영민;안재준
    • 융합정보논문지
    • /
    • 제9권6호
    • /
    • pp.83-90
    • /
    • 2019
  • 사람들은 자신의 더 나은 선택을 위하여 끊임없이 노력한다. 이러한 이유로 추천시스템이 개발되었으며, 1990년대 초반부터 계속해서 발전하고 있다. 그 중, 협업필터링 기법은 추천시스템 분야에서 우수한 성능을 보였으며, 기계학습이 등장하면서 기계학습을 이용한 추천시스템에 관한 연구가 활발히 진행되었다. 본 연구는 앙상블 방법 중에서 스태킹 모형을 사용하여 추천시스템을 구축하며, 실제 고객의 상품 구매 데이터를 활용하여 협업필터링과 기계학습 기반 스태킹 모형으로 추천시스템을 개발하였다. 제시한 모형의 추천 성능은 기존의 협업필터링과 기계학습 기반 추천시스템과 비교하여 모형의 우수성을 확인하며, 연구결과는 스태킹 모형을 이용한 추천시스템 모형의 추천 성능이 개선됨을 확인하였다. 향후 본 연구에서 제안한 모형은 개인이나 기업이 더 나은 선택을 하여 상품을 추천할 때 도움을 줄 것으로 기대한다.

설명 가능한 개인화 영화 추천 서비스를 위한 딥러닝 기반 텍스트 요약 모델 (Deep Learning-based Text Summarization Model for Explainable Personalized Movie Recommendation Service)

  • 진요요;강경모;김재경
    • 한국IT서비스학회지
    • /
    • 제21권2호
    • /
    • pp.109-126
    • /
    • 2022
  • The number and variety of products and services offered by companies have increased dramatically, providing customers with more choices to meet their needs. As a solution to this information overload problem, the provision of tailored services to individuals has become increasingly important, and the personalized recommender systems have been widely studied and used in both academia and industry. Existing recommender systems face important problems in practical applications. The most important problem is that it cannot clearly explain why it recommends these products. In recent years, some researchers have found that the explanation of recommender systems may be very useful. As a result, users are generally increasing conversion rates, satisfaction, and trust in the recommender system if it is explained why those particular items are recommended. Therefore, this study presents a methodology of providing an explanatory function of a recommender system using a review text left by a user. The basic idea is not to use all of the user's reviews, but to provide them in a summarized form using only reviews left by similar users or neighbors involved in recommending the item as an explanation when providing the recommended item to the user. To achieve this research goal, this study aims to provide a product recommendation list using user-based collaborative filtering techniques, combine reviews left by neighboring users with each product to build a model that combines text summary methods among deep learning-based natural language processing methods. Using the IMDb movie database, text reviews of all target user neighbors' movies are collected and summarized to present descriptions of recommended movies. There are several text summary methods, but this study aims to evaluate whether the review summary is well performed by training the Sequence-to-sequence+attention model, which is a representative generation summary method, and the BertSum model, which is an extraction summary model.

BERT 기반 감성분석을 이용한 추천시스템 (Recommender system using BERT sentiment analysis)

  • 박호연;김경재
    • 지능정보연구
    • /
    • 제27권2호
    • /
    • pp.1-15
    • /
    • 2021
  • 추천시스템은 사용자의 기호를 파악하여 물품 구매 결정을 도와주는 역할을 할 뿐만 아니라, 비즈니스 전략의 관점에서도 중요한 역할을 하기에 많은 기업과 기관에서 관심을 갖고 있다. 최근에는 다양한 추천시스템 연구 중에서도 NLP와 딥러닝 등을 결합한 하이브리드 추천시스템 연구가 증가하고 있다. NLP를 이용한 감성분석은 사용자 리뷰 데이터가 증가함에 따라 2000년대 중반부터 활용되기 시작하였지만, 기계학습 기반 텍스트 분류를 통해서는 텍스트의 특성을 완전히 고려하기 어렵기 때문에 리뷰의 정보를 식별하기 어려운 단점을 갖고 있다. 본 연구에서는 기계학습의 단점을 보완하기 위하여 BERT 기반 감성분석을 활용한 추천시스템을 제안하고자 한다. 비교 모형은 Naive-CF(collaborative filtering), SVD(singular value decomposition)-CF, MF(matrix factorization)-CF, BPR-MF(Bayesian personalized ranking matrix factorization)-CF, LSTM, CNN-LSTM, GRU(Gated Recurrent Units)를 기반으로 하는 추천 모형이며, 실제 데이터에 대한 분석 결과, BERT를 기반으로 하는 추천시스템의 성과가 가장 우수한 것으로 나타났다.

개선된 데이터 마이닝 기술에 의한 웹 기반 지능형 추천시스템 구축 (Development of Web-based Intelligent Recommender Systems using Advanced Data Mining Techniques)

  • 김경재;안현철
    • Journal of Information Technology Applications and Management
    • /
    • 제12권3호
    • /
    • pp.41-56
    • /
    • 2005
  • Product recommender system is one of the most popular techniques for customer relationship management. In addition, collaborative filtering (CF) has been known to be one of the most successful recommendation techniques in product recommender systems. However, CF has some limitations such as sparsity and scalability problems. This study proposes hybrid cluster analysis and case-based reasoning (CBR) to address these problems. CBR may relieve the sparsity problem because it recommends products using customer profile and transaction data, but it may still give rise to scalability problem. Thus, this study uses cluster analysis to reduce search space prior to CBR for scalability Problem. For cluster analysis, this study employs hybrid genetic and K-Means algorithms to avoid possibility of convergence in local minima of typical cluster analyses. This study also develops a Web-based prototype system to test the superiority of the proposed model.

  • PDF

LOD-기반 추천 시스템에서 LOD 그래프에 가중치를 사용한 의미 거리 측정 모델 (A Semantic Distance Measurement Model using Weights on the LOD Graph in an LOD-based Recommender System)

  • 허원회
    • 한국융합학회논문지
    • /
    • 제12권7호
    • /
    • pp.53-60
    • /
    • 2021
  • LOD-기반 추천 시스템은 보통 DBpedia와 같은 LOD 데이터세트 내에서 사용가능한 데이터를 활용하여 최종 사용자에게 영화, 책, 음악과 같은 아이템을 추천한다. 이러한 시스템은 링크드 데이터 리소스 쌍 간의 일치 정도를 측정하는 의미 유사도 알고리즘을 사용한다. 이 논문에서는 LOD 그래프의 링크에 사용자 평가 등급을 변환한 가중치를 할당하여 LOD-기반 추천 시스템에서 의미 거리를 측정하는 새로운 접근방식을 제안했다. 이 논문에서 제안된 의미 거리 측정 모델은 가중치 계산을 통해 그래프가 사용자에게 개인화되는 처리 단계와 이러한 가중치를 LDSD에 적용하는 방법을 기반으로 한다. 실험 결과는 다른 유사한 방법들과 비교하여 제안된 방법이 더 높은 정확도를 보였으며, 추천 시스템의 의미 거리 측정의 범위를 넓혀서 유사도 향상에 기여하였다. 향후 연구로는 다른 방법의 LOD-기반 유사도 측정을 사용하여 모델에 미치는 영향을 분석하는 것을 목표로 한다.

순차적 추천에서의 RNN, CNN 및 GAN 모델 비교 연구 (A Comparison Study of RNN, CNN, and GAN Models in Sequential Recommendation)

  • 윤지형;정재원;장백철
    • 인터넷정보학회논문지
    • /
    • 제23권4호
    • /
    • pp.21-33
    • /
    • 2022
  • 최근 추천 시스템은 영화, 음악, 온라인 쇼핑 및 SNS 등 다양한 분야들에서 광범위하게 활용되고 있으며, 추천 시스템 분야에서 1세대 모델이라고 할수 있는 Apriori 모델을 통한 연관분석부터 최근 많은 주목을 받는 딥러닝 기반 모델들까지 많은 모델들이 제안되어왔다. 추천 시스템에서 기본 모델들은 협업 필터링(Collaborative filtering) 방법, 콘텐츠 기반 필터링(Content-based filtering) 방법, 그리고 이 두 방법을 통합적으로 사용하는 하이브리드 필터링(Hybrid filtering) 방법으로 분류될 수 있다. 하지만 이러한 모델들은 최근 점점 빠르게 변화하는 사용자-아이템 간의 상호관계와 빅데이터의 발전과 같은 내외 변화 요인들에 적응하지 못하면서 점점 분야 내 방법론으로써의 지위를 잃어가고 있다. 반면, 추천 시스템 내에서 딥러닝 기반 모델들은 비선형 변환, 표현학습, 순차적 모델링, 그리고 유연성과 같은 장점들 때문에 그 비중이 높아지고 있는 추세이다. 본 논문에서는 딥러닝 기반 추천 모델들 중에서도 사용자-아이템 간의 상호작용에 대해 보다 정확하고, 유연성 있게 분석이 가능한 순차적 모델링에 적합한 순환 신경망, 합성곱 신경망, 그리고 생성적 적대 신경망 중심 기반 모델로 분류하여 비교 및 분석한다.

Auxiliary Stacked Denoising Autoencoder based Collaborative Filtering Recommendation

  • Mu, Ruihui;Zeng, Xiaoqin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권6호
    • /
    • pp.2310-2332
    • /
    • 2020
  • In recent years, deep learning techniques have achieved tremendous successes in natural language processing, speech recognition and image processing. Collaborative filtering(CF) recommendation is one of widely used methods and has significant effects in implementing the new recommendation function, but it also has limitations in dealing with the problem of poor scalability, cold start and data sparsity, etc. Combining the traditional recommendation algorithm with the deep learning model has brought great opportunity for the construction of a new recommender system. In this paper, we propose a novel collaborative recommendation model based on auxiliary stacked denoising autoencoder(ASDAE), the model learns effective the preferences of users from auxiliary information. Firstly, we integrate auxiliary information with rating information. Then, we design a stacked denoising autoencoder based collaborative recommendation model to learn the preferences of users from auxiliary information and rating information. Finally, we conduct comprehensive experiments on three real datasets to compare our proposed model with state-of-the-art methods. Experimental results demonstrate that our proposed model is superior to other recommendation methods.

사용자 경향에 기반한 동적 추천 기법 : 영화 추천 시스템을 중심으로 (Dynamic Recommender on User Taste Tendency Model : Focusing on Movie Recommender System)

  • 이수정;이형동;김형주
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권2호
    • /
    • pp.153-163
    • /
    • 2004
  • 대부분의 추천 시스템에서는 개인의 선호 정보를 바탕으로 한 내용-기반 추천 기법과 다른 사람들로부터의 추천을 기반으로 한 사회적 추천 기법을 사용한다. 이들 두 기법은 각각 장단점을 갖고 있으며, 서로 경쟁 관계에 있다기보다 상호 보완적인 성격을 갖고 있다. 이에 두 기법의 적절한 조합이 전체 추천 시스템의 질을 결정하는 관건이 된다. 본 논문에서는 사용자 개인마다 각 기법에 대한 만족도와 의존도가 다름을 밝히고, 이러한 각 개인의 경향에 따라 여러 추천 기법의 결과를 개인별로 조합해 주는 기법을 제안하였다. 각 개인의 경향을 나타내는 척도로 충성도, 다양도, 전문가도 둥의 척도를 정의하여 사용하였으며, 이 원리에 의해 동작하는 조합 엔진의 결과는 최고 40%, 평균 23%의 coverage 개선 효과를 나타내었다.

상품 추천 서비스 유형에 따른 소비자 반응 연구 : 프라이버시 계산 모델을 중심으로 (A Consumer Perception based on the Type of Recommender System : A Privacy Calculus Perspective)

  • 최혜진;조창환
    • 한국콘텐츠학회논문지
    • /
    • 제20권3호
    • /
    • pp.254-266
    • /
    • 2020
  • 상품 추천 서비스는 범람하는 온라인 정보 속에서 소비자의 정보탐색 시간을 절약해 준다. 본 연구에서는 프라이버시 계산 모델을 적용하여 추천 서비스 유형에 따른 소비자의 반응을 비교하였으며 인지된 개인화의 조절효과를 검증하였다. 연구 결과, 인지된 유용성과 클릭의도는 하이브리드 필터링 추천, 베스트셀러 추천, 지인기반 추천 순으로 높게 나타났고, 프라이버시 염려는 지인기반 추천, 하이브리드 필터링 추천, 베스트셀러 추천 순으로 높았다. 인지된 개인화는 인지된 유용성에 있어서 추천 서비스 유형과 상호작용효과가 존재하는 것으로 나타났다. 인지된 유용성은 클릭의도에 긍정적인 영향을 주었으나 프라이버시 염려는 클릭의도에 부정적인 영향을 주는 것을 확인했다. 본 연구는 추천 서비스 유형에 따른 소비자 반응을 비교하고 행동의도에 미치는 영향력을 검증했다는 데 의의가 있으며 추천 서비스를 제공하는 기업이나 알고리즘을 개발하는 실무자들에게 의미 있는 시사점을 제시할 수 있을 것으로 기대한다.