• Title/Summary/Keyword: model symmetry

Search Result 236, Processing Time 0.024 seconds

The Effect of the Configuration Interaction on 10Dq in a Point Charge Model (점전하 모형에 의한 10Dq 에서의 배치간 작용의 영향)

  • Hojing Kim;Duckhwan Lee
    • Journal of the Korean Chemical Society
    • /
    • v.21 no.1
    • /
    • pp.23-31
    • /
    • 1977
  • For the metal complex of $d^1$ configuration with the octahedrally coordinated ligands, the crystal field parameter, 10Dq, is calculated from first principles within the framework of the crystal field theory. With the point charge model, the configuration interaction is introduced by use of the Shull-L$\"{o}$wdin functions. Through the Integral Hellmann-Feynman Theorem, the higher order effect is visualized. It is found that the higher order effect on 10Dq is about $50{\%}$ of the first order effect. Since 3d function is angularly undistorted and radially equally distorted in $E_g\;and\;T_{2g}$ states, due to the octahedral potential, the calculated 10Dq is still the unique parameter for the splitting.

  • PDF

Analytical solution of a contact problem and comparison with the results from FEM

  • Oner, Erdal;Yaylaci, Murat;Birinci, Ahmet
    • Structural Engineering and Mechanics
    • /
    • v.54 no.4
    • /
    • pp.607-622
    • /
    • 2015
  • This paper presents a comparative study of analytical method and finite element method (FEM) for analysis of a continuous contact problem. The problem consists of two elastic layers loaded by means of a rigid circular punch and resting on semi-infinite plane. It is assumed that all surfaces are frictionless and only compressive normal tractions can be transmitted through the contact areas. Firstly, analytical solution of the problem is obtained by using theory of elasticity and integral transform techniques. Then, finite element model of the problem is constituted using ANSYS software and the two dimensional analysis of the problem is carried out. The contact stresses under rigid circular punch, the contact areas, normal stresses along the axis of symmetry are obtained for both solutions. The results show that contact stresses and the normal stresses obtained from finite element method (FEM) provide boundary conditions of the problem as well as analytical results. Also, the contact areas obtained from finite element method are very close to results obtained from analytical method; disagree by 0.03-1.61%. Finally, it can be said that there is a good agreement between two methods.

Robust second-order rotatable designs invariably applicable for some lifetime distributions

  • Kim, Jinseog;Das, Rabindra Nath;Singh, Poonam;Lee, Youngjo
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.6
    • /
    • pp.595-610
    • /
    • 2021
  • Recently a few articles have derived robust first-order rotatable and D-optimal designs for the lifetime response having distributions gamma, lognormal, Weibull, exponential assuming errors that are correlated with different correlation structures such as autocorrelated, intra-class, inter-class, tri-diagonal, compound symmetry. Practically, a first-order model is an adequate approximation to the true surface in a small region of the explanatory variables. A second-order model is always appropriate for an unknown region, or if there is any curvature in the system. The current article aims to extend the ideas of these articles for second-order models. Invariant (free of the above four distributions) robust (free of correlation parameter values) second-order rotatable designs have been derived for the intra-class and inter-class correlated error structures. Second-order rotatability conditions have been derived herein assuming the response follows non-normal distribution (any one of the above four distributions) and errors have a general correlated error structure. These conditions are further simplified under intra-class and inter-class correlated error structures, and second-order rotatable designs are developed under these two structures for the response having anyone of the above four distributions. It is derived herein that robust second-order rotatable designs depend on the respective error variance covariance structure but they are independent of the correlation parameter values, as well as the considered four response lifetime distributions.

Simulation of Inhomogeneous Texture through the Thickness Direction during Hot Rolling Deformation in Strip Cast Al-5wt%Mg Alloy (박판 주조된 Al-5 wt%Mg 합금의 열간압연 시 두께방향 불균일 집합조직 시뮬레이션)

  • Song, Young-Sik;Kim, Byoung-Jin;Kim, Hyoung-Wook;Kang, Seok-Bong;Choi, Shi-Hoon
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.3
    • /
    • pp.135-143
    • /
    • 2008
  • The inhomogeneous texture through the thickness direction can be developed during hot rolling deformation in aluminum alloy. In this study, the inhomogeneous texture evolution through the thickness direction during hot rolling deformation in Al-5 wt%Mg alloy produced by a new strip casting technology was measured experimentally. Macrotexture measurement was conducted using X-ray diffractometer. A finite element analysis with ABAQUS/StandardTM and rate sensitive polycrystal model were used to predict the evolution of hot rolling texture. The experimental results of Al-5 wt%Mg alloy were compared with calculated results. The shear texture components tend to be increased at the surface region of the hot-rolled specimen. It is found that triclinic sample symmetry is more accurate assumption for texture analysis and simulation in the surface region of hot-rolled aluminum alloy.

Air horizontal jets into quiescent water

  • Weichao Li ;Zhaoming Meng;Jianchuang Sun;Weihua Cai ;Yandong Hou
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2011-2017
    • /
    • 2023
  • Gas submerged jet is an outstanding thermohydraulic phenomenon in pool scrubbing of fission products during a severe nuclear accident. Experiments were performed on the hydraulic characteristics in the ranges of air mass flux 0.1-1400 kg/m2s and nozzle diameter 10-80 mm. The results showed that the dependence of inlet pressure on the mass flux follows a power law in subsonic jets and a linear law in sonic jets. The effect of nozzle submerged depth was negligible. The isolated bubbling regime, continuous bubbling regime, transition regime, and jetting regime were observed in turn, as the mass flux increased. In the bubbling regime and jetting regime, the air volume fraction distribution was approximately symmetric in space. Themelis model could capture the jet trajectory well. In the transition regime, the air volume fraction distribution loses symmetry due to the bifurcated secondary plume. The Li correlation and Themelis model showed sufficient accuracy for the prediction of jet penetration length.

Revolutionizing Brain Tumor Segmentation in MRI with Dynamic Fusion of Handcrafted Features and Global Pathway-based Deep Learning

  • Faizan Ullah;Muhammad Nadeem;Mohammad Abrar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.1
    • /
    • pp.105-125
    • /
    • 2024
  • Gliomas are the most common malignant brain tumor and cause the most deaths. Manual brain tumor segmentation is expensive, time-consuming, error-prone, and dependent on the radiologist's expertise and experience. Manual brain tumor segmentation outcomes by different radiologists for the same patient may differ. Thus, more robust, and dependable methods are needed. Medical imaging researchers produced numerous semi-automatic and fully automatic brain tumor segmentation algorithms using ML pipelines and accurate (handcrafted feature-based, etc.) or data-driven strategies. Current methods use CNN or handmade features such symmetry analysis, alignment-based features analysis, or textural qualities. CNN approaches provide unsupervised features, while manual features model domain knowledge. Cascaded algorithms may outperform feature-based or data-driven like CNN methods. A revolutionary cascaded strategy is presented that intelligently supplies CNN with past information from handmade feature-based ML algorithms. Each patient receives manual ground truth and four MRI modalities (T1, T1c, T2, and FLAIR). Handcrafted characteristics and deep learning are used to segment brain tumors in a Global Convolutional Neural Network (GCNN). The proposed GCNN architecture with two parallel CNNs, CSPathways CNN (CSPCNN) and MRI Pathways CNN (MRIPCNN), segmented BraTS brain tumors with high accuracy. The proposed model achieved a Dice score of 87% higher than the state of the art. This research could improve brain tumor segmentation, helping clinicians diagnose and treat patients.

News Impacts and the Asymmetry of Oil Price Volatility (뉴스충격과 유가변동성의 비대칭성)

  • Mo, SooWon
    • Environmental and Resource Economics Review
    • /
    • v.13 no.2
    • /
    • pp.175-194
    • /
    • 2004
  • Volumes of research have been implemented to estimate and predict the oil price. These models, however, fail in accurately predicting oil price as a model composed of only a few observable variables is limiting. Unobservable variables and news that have been overlooked in past research, yet have a high likelihood of affecting the oil price. Hence, this paper analyses the news impact on the price. The standard GARCH model fails in capturing some important features of the data. The estimated news impact curve for the GARCH model, which imposes symmetry on the conditional variances, suggests that the conditional variance is underestimated for negative shocks and overestimated for positive shocks. Hence, this paper introduces the asymmetric or leverage volatility models, in which good news and bad news have different impact on volatility. They include the EGARCH, AGARCH, and GJR models. The empirical results showed that negative shocks introduced more volatility than positive shocks. Overall, the AGARCH and GJR were the best at capturing this asymmetric effect. Furthermore, the GJR model successfully revealed the shape of the news impact curve and was a useful approach to modeling conditional heteroscedasticity.

  • PDF

A new sample selection model for overdispersed count data (과대산포 가산자료의 새로운 표본선택모형)

  • Jo, Sung Eun;Zhao, Jun;Kim, Hyoung-Moon
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.6
    • /
    • pp.733-749
    • /
    • 2018
  • Sample selection arises as a result of the partial observability of the outcome of interest in a study. Heckman introduced a sample selection model to analyze such data and proposed a full maximum likelihood estimation method under the assumption of normality. Recently sample selection models for binomial and Poisson response variables have been proposed. Based on the theory of symmetry-modulated distribution, we extend these to a model for overdispersed count data. This type of data with no sample selection is often modeled using negative binomial distribution. Hence we propose a sample selection model for overdispersed count data using the negative binomial distribution. A real data application is employed. Simulation studies reveal that our estimation method based on profile log-likelihood is stable.

Continuum Based Plasticity Models for Cubic Symmetry Lattice Materials Under Multi-Surface Loading (다중면 하중하에 정방향 대층구조를 가진 격자재료의 연속적인 소성모델)

  • Seon, Woo-Hyun;Hu, Jong-Wan
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.3
    • /
    • pp.1-11
    • /
    • 2011
  • The typical truss-lattice material successively packed by repeated cubic symmetric unit cells consists of sub-elements (SE) proposed in this study. The representative continuum model for this truss-lattice material such as the effective strain and stress relationship can be formulated by the homogenization procedure based on the notation of averaged mechanical properties. The volume fractions of micro-scale struts have a significant influence on the effective strength as well as the relative density in the lattice plate with replicable unit cell structures. Most of the strength contribution in the lattice material is induced by axial stiffness under uniform stretching or compression responses. Therefore, continuum based constitutive models composed of homogenized member stiffness include these mechanical characteristics with respect to strength, internal stress state, material density based on the volume fraction and even failure modes. It can be also recognized that the stress state of micro-scale struts is directly associated with the continuum constitutive model. The plastic flow at the micro-scale stress can extend the envelope of the analytical stress function on the surface of macro-scale stress derived from homogenized constitutive equations. The main focus of this study is to investigate the basic topology of unit cell structures with the cubic symmetric system and to formulate the plastic models to predict pressure dependent macro-scale stress surface functions.

3D building modeling from airborne Lidar data by building model regularization (건물모델 정규화를 적용한 항공라이다의 3차원 건물 모델링)

  • Lee, Jeong Ho;Ga, Chill Ol;Kim, Yong Il;Lee, Byung Gil
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.4
    • /
    • pp.353-362
    • /
    • 2012
  • 3D building modeling from airborne Lidar without model regularization may cause positional errors or topological inconsistency in building models. Regularization of 3D building models, on the other hand, restricts the types of models which can be reconstructed. To resolve these issues, this paper modelled 3D buildings from airborne Lidar by building model regularization which considers more various types of buildings. Building points are first segmented into roof planes by clustering in feature space and segmentation in object space. Then, 3D building models are reconstructed by consecutive adjustment of planes, lines, and points to satisfy parallelism, symmetry, and consistency between model components. The experimental results demonstrated that the method could make more various types of 3d building models with regularity. The effects of regularization on the positional accuracies of models were also analyzed quantitatively.