• Title/Summary/Keyword: model quantization

Search Result 227, Processing Time 0.026 seconds

Adaptive Digital Watermarking using Stochastic Image Modeling Based on Wavelet Transform Domain (웨이브릿 변환 영역에서 스토케스틱 영상 모델을 이용한 적응 디지털 워터마킹)

  • 김현천;권기룡;김종진
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.3
    • /
    • pp.508-517
    • /
    • 2003
  • This paper presents perceptual model with a stochastic multiresolution characteristic that can be applied with watermark embedding in the biorthogonal wavelet domain. The perceptual model with adaptive watermarking algorithm embeds at the texture and edge region for more strongly embedded watermark by the SSQ. The watermark embedding is based on the computation of a NVF that has local image properties. This method uses non- stationary Gaussian and stationary Generalized Gaussian models because watermark has noise properties. The particularities of embedding in the stationary GG model use shape parameter and variance of each subband regions in multiresolution. To estimate the shape parameter, we use a moment matching method. Non-stationary Gaussian model uses the local mean and variance of each subband. The experiment results of simulation were found to be excellent invisibility and robustness. Experiments of such distortion are executed by Stirmark 3.1 benchmark test.

  • PDF

A Video Traffic Model based on the Shifting-Level Process (Part I : Modeling and the Effects of SRD and LRD on Queueing Behavior) (Shifting-Level Process에 기반한 영상트래픽 모델 (1부: 모델링과 대기체계 영향 분석))

  • 안희준;강상혁;김재균
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.10B
    • /
    • pp.1971-1978
    • /
    • 1999
  • In this paper, we study the effects of long-range dependence (LRD) in VBR video traffic on queueing system. This paper consists of Part I and II. In Part I, we present a (LRD) video traffic model based on the shifting-level (SL) process. We observe that the ACF of an empirical video trace is accurately captured by the shifting-level process with compound correlation (SLCC): an exponential function in short range and a hyperbolic function in long range. We present an accurate parameter matching algorithm for video traffic. In the Part II, we offer the queueing analysis of SL/D/1/K called ‘quantization reduction method’. Comparing the queueing performances of the DAR(1) model and the SLCC with that of a real video trace, we identify the effects of SRD and LRD in VBR video traffic on queueing performance. Simulation results show that Markoivian models can estimate network performances fairly accurately under a moderate traffic load and buffer condition, whereas LRD may have a significant effect on queueing behavior under a heavy traffic load and large buffer condition.

  • PDF

Recognition of License Plates Using a Hybrid Statistical Feature Model and Neural Networks (하이브리드 통계적 특징 모델과 신경망을 이용한 자동차 번호판 인식)

  • Lew, Sheen;Jeong, Byeong-Jun;Kang, Hyun-Chul
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.12
    • /
    • pp.1016-1023
    • /
    • 2009
  • A license plate recognition system consists of image processing in which characters and features are extracted, and pattern recognition in which extracted characters are classified. Feature extraction plays an important role in not only the level of data reduction but also performance of recognition. Thus, in this paper, we focused on the recognition of numeral characters especially on the feature extraction of numeral characters which has much effect in the result of plate recognition. We suggest a hybrid statistical feature model which assures the best dispersion of input data by reassignment of clustering property of input data. And we verify the effectiveness of suggested model using multi-layer perceptron and learning vector quantization neural networks. The results show that the proposed feature extraction method preserves the information of a license plate well and also is robust and effective for even noisy and external environment.

SHADOW EXTRACTION FROM ASTER IMAGE USING MIXED PIXEL ANALYSIS

  • Kikuchi, Yuki;Takeshi, Miyata;Masataka, Takagi
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.727-731
    • /
    • 2003
  • ASTER image has some advantages for classification such as 15 spectral bands and 15m ${\sim}$ 90m spatial resolution. However, in the classification using general remote sensing image, shadow areas are often classified into water area. It is very difficult to divide shadow and water. Because reflectance characteristics of water is similar to characteristics of shadow. Many land cover items are consisted in one pixel which is 15m spatial resolution. Nowadays, very high resolution satellite image (IKONOS, Quick Bird) and Digital Surface Model (DSM) by air borne laser scanner can also be used. In this study, mixed pixel analysis of ASTER image has carried out using IKONOS image and DSM. For mixed pixel analysis, high accurated geometric correction was required. Image matching method was applied for generating GCP datasets. IKONOS image was rectified by affine transform. After that, one pixel in ASTER image should be compared with corresponded 15×15 pixel in IKONOS image. Then, training dataset were generated for mixed pixel analysis using visual interpretation of IKONOS image. Finally, classification will be carried out based on Linear Mixture Model. Shadow extraction might be succeeded by the classification. The extracted shadow area was validated using shadow image which generated from 1m${\sim}$2m spatial resolution DSM. The result showed 17.2% error was occurred in mixed pixel. It might be limitation of ASTER image for shadow extraction because of 8bit quantization data.

  • PDF

Noise Elimination Using Improved MFCC and Gaussian Noise Deviation Estimation

  • Sang-Yeob, Oh
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.1
    • /
    • pp.87-92
    • /
    • 2023
  • With the continuous development of the speech recognition system, the recognition rate for speech has developed rapidly, but it has a disadvantage in that it cannot accurately recognize the voice due to the noise generated by mixing various voices with the noise in the use environment. In order to increase the vocabulary recognition rate when processing speech with environmental noise, noise must be removed. Even in the existing HMM, CHMM, GMM, and DNN applied with AI models, unexpected noise occurs or quantization noise is basically added to the digital signal. When this happens, the source signal is altered or corrupted, which lowers the recognition rate. To solve this problem, each voice In order to efficiently extract the features of the speech signal for the frame, the MFCC was improved and processed. To remove the noise from the speech signal, the noise removal method using the Gaussian model applied noise deviation estimation was improved and applied. The performance evaluation of the proposed model was processed using a cross-correlation coefficient to evaluate the accuracy of speech. As a result of evaluating the recognition rate of the proposed method, it was confirmed that the difference in the average value of the correlation coefficient was improved by 0.53 dB.

Estimation of Land Surface Energy Fluxes using CLM and VIC model (CLM과 VIC 모형을 활용한 지표 에너지 플럭스 산정)

  • Kim, Daeun;Ray, Ram L.;King, Seokkoo;Choi, Minha
    • Journal of Wetlands Research
    • /
    • v.18 no.2
    • /
    • pp.166-172
    • /
    • 2016
  • Accurate understanding of land surface is essential to analyze energy exchanges between earth surface and atmosphere. For the quantization of energy fluxes, the various researches about Land Surface Model(LSM) have been progressed. Among the various LSMs, the researches using Common Land Model(CLM) and Variable Infiltration Capacity(VIC) model are performed briskly. The CLM which is advanced LSM can calculate realistic results with few user defined parameters. The VIC model which is also typical LSM is widely used for estimation of energy fluxes and runoff in various fields. In this study, the energy fluxes which are net radiation, sensible heat flux, and latent heat flux were estimated using CLM and VIC model at Southern Sierra-Critical Zone Observatory(SS-CZO) site in California, United States. In case of net radiation and sensible heat flux, both models showed good agreement with observations, however, the CLM showed underestimated patterns of net radiation and sensible heat flux during precipitation period. In case of latent heat flux, the CLM represented better estimation of latent heat flux than VIC model which underestimated the latent heat flux. Through the estimation of energy fluxes and analysis of models' pros and cons, the applicability of CLM and VIC models and need of multi-model application were identified.

An Adaptive Watermark Detection Algorithm for Vector Geographic Data

  • Wang, Yingying;Yang, Chengsong;Ren, Na;Zhu, Changqing;Rui, Ting;Wang, Dong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.1
    • /
    • pp.323-343
    • /
    • 2020
  • With the rapid development of computer and communication techniques, copyright protection of vector geographic data has attracted considerable research attention because of the high cost of such data. A novel adaptive watermark detection algorithm is proposed for vector geographic data that can be used to qualitatively analyze the robustness of watermarks against data addition attacks. First, a watermark was embedded into the vertex coordinates based on coordinate mapping and quantization. Second, the adaptive watermark detection model, which is capable of calculating the detection threshold, false positive error (FPE) and false negative error (FNE), was established, and the characteristics of the adaptive watermark detection algorithm were analyzed. Finally, experiments were conducted on several real-world vector maps to show the usability and robustness of the proposed algorithm.

Quantization and Calibration of Color Information From Machine Vision System for Beef Color Grading (소고기 육색 등급 자동 판정을 위한 기계시각 시스템의 칼라 보정 및 정량화)

  • Kim, Jung-Hee;Choi, Sun;Han, Na-Young;Ko, Myung-Jin;Cho, Sung-Ho;Hwang, Heon
    • Journal of Biosystems Engineering
    • /
    • v.32 no.3
    • /
    • pp.160-165
    • /
    • 2007
  • This study was conducted to evaluate beef using a color machine vision system. The machine vision system has an advantage to measure larger area than a colorimeter and also could measure other quality factors like distribution of fats. However, the machine vision measurement is affected by system components. To measure the beef color with the machine vision system, the effect of color balancing control was tested and calibration model was developed. Neural network for color calibration which learned reference color patches showed a high correlation with colorimeter in L*a*b* coordinates and had an adaptability at various measurement environments. The trained network showed a very high correlation with the colorimeter when measuring beef color.

The Effect of FIR Filtering and Spectral Tilt on Speech Recognition with MFCC (FIR 필터링과 스펙트럼 기울이기가 MFCC를 사용하는 음성인식에 미치는 효과)

  • Lee, Chang-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.4
    • /
    • pp.363-371
    • /
    • 2010
  • In an effort to enhance the quality of feature vector classification and thereby reduce the recognition error rate for the speaker-independent speech recognition, we study the effect of spectral tilt on the Fourier magnitude spectrum en route to the extraction of MFCC. The effect of FIR filtering on the speech signal on the speech recognition is also investigated in parallel. Evaluation of the proposed methods are performed by two independent ways of the Fisher discriminant objective function and speech recognition test by hidden Markov model with fuzzy vector quantization. From the experiments, the recognition error rate is found to show about 10% relative improvements over the conventional method by an appropriate choice of the tilt factor.

A Manufacturing Cell Formantion Algorithm Using Neural Networks (신경망을 이용한 제조셀 형성 알고리듬)

  • 이준한;김양렬
    • Korean Management Science Review
    • /
    • v.16 no.1
    • /
    • pp.157-171
    • /
    • 1999
  • In a increasingly competitive marketplace, the manufacturing companies have no choice but looking for ways to improve productivity to sustain their competitiveness and survive in the industry. Recently cellular manufacturing has been under discussion as an option to be easily implemented without burdensome capital investment. The objective of cellular manufacturing is to realize many aspects of efficiencies associated with mass production in the less repetitive job-shop production systems. The very first step for cellular manufacturing is to group the sets of parts having similar processing requirements into part families, and the equipment needed to process a particular part family into machine cells. The underlying problem to determine the part and machine assignments to each manufacturing cell is called the cell formation. The purpose of this study is to develop a clustering algorithm based on the neural network approach which overcomes the drawbacks of ART1 algorithm for cell formation problems. In this paper, a generalized learning vector quantization(GLVQ) algorithm was devised in order to transform a 0/1 part-machine assignment matrix into the matrix with diagonal blocks in such a way to increase clustering performance. Furthermore, an assignment problem model and a rearrangement procedure has been embedded to increase efficiency. The performance of the proposed algorithm has been evaluated using data sets adopted by prior studies on cell formation. The proposed algorithm dominates almost all the cell formation reported so far, based on the grouping index($\alpha$ = 0.2). Among 27 cell formation problems investigated, the result by the proposed algorithm was superior in 11, equal 15, and inferior only in 1.

  • PDF