• Title/Summary/Keyword: model investigation

Search Result 4,124, Processing Time 0.031 seconds

A Preliminary Study on the Analysis Model of Energy System based on Fuel Cell for Apartment Houses (연료전지기반 공동주택 에너지시스템 분석모델에 관한 기초연구)

  • Lee, Hong-Cheol;Hwang, In-Ju
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.396-401
    • /
    • 2003
  • In the present study, preliminary investigation were carried out by analysis of energy system(heat and electricity) based on phosphoric acid fuel-cell of 50 kW for eco-apartment houses. Analysis model were consisted of fuel cell energy system, secondary energy unit and residential building of 5 stories with 20 and 40 households. And the investigation results reviewed under load pattern of heat and electric power of the apartment houses. The results showed mismatch between the needed heat load pattern and output of fuel cell energy system. The mismatch rate were assessed about 10-180% of heat load for apartment houses with season. We found that secondary energy unit are needed in order to supply insufficient heat.

  • PDF

Performance Investigation of a Continuously Variable ER Damper for Passenger Vehicles (승용차용 연속가변 ER댐퍼의 성능연구)

  • Kim, K.S.;Chang, E.;Choi, S.B.;Cheong, C.C.;Suh, M.S.;Yeo, M.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.6
    • /
    • pp.69-77
    • /
    • 1995
  • This paper presents performance investigation of a continuously variable ER(Electro-Rheological) damper for passenger vehicles. A dynamic model of the damper is formulated by incorporating electric field-dependent Bingham properties of the ER fluid. The Bingham properties are experimentally obtained through Couette type electroviscous measurement with respect to two different particle concentrations. The governing equation of the hydraulic model treating three components of fluid resistances;electrode duct flow, check valve flow and piston gap flow, is achieved via the bond graph method. A prototype ER damper is then designed and manufactured on the basis of parameter analysis. The damping forces of the system are experimentally evaluated by changing the intensity of the electric field, the particle concentration and the electrode gap.

  • PDF

CURRENT STATUS AND IMPORTANT ISSUES ON SEISMIC HAZARD EVALUATION METHODOLOGY IN JAPAN

  • Ebisawa, Katsumi
    • Nuclear Engineering and Technology
    • /
    • v.41 no.10
    • /
    • pp.1223-1234
    • /
    • 2009
  • The outlines of seismic PSA implementation standards and seismic hazard evaluation procedure were shown. An overview of the cause investigation of seismic motion amplification on the Niigata-ken Chuetsu-oki (NCO) earthquake was also shown. Then, the contents for improving the seismic hazard evaluation methodology based on the lessons learned from the NCO earthquake were described. (1) It is very important to recognize the effectiveness of a fault model on the detail seismic hazard evaluation for the near seismic source through the cause investigation of the NCO earthquake. (2) In order to perform and proceed with a seismic hazard evaluation, the Japan Nuclear Energy Safety Organization has proposed the framework of the open deliberation rule regarding the treatment of uncertainty which was made so as to be able to utilize a logic tree. (3) The b-value evaluation on the "Stress concentrating zone," which is a high seismic activity around the NCO hypocenter area, should be modified based on the Gutenberg-Richter equation.

Numerical Investigation on Smoke Behavior in Rescue Station for Tunnel Fires (철도터널 화재 시 구난역 내의 연기거동에 대한 수치해석 연구)

  • Hong, Sa-Hoon;Ryou, Hong-Sun;Lee, Seong-Hyuk
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1740-1746
    • /
    • 2008
  • The present study performed numerical investigation to analyze the smoke behavior in the rescue station by using the commercial CFD code (FLUENT Ver 6.3). The present study adopted a 10MW ultrafast mode for simulation, and it also used the MVHS(Modify Volumetric Heat Source) model modified from the original VHS(Volumetric Heat Source) model in order to treat the product generation and the oxygen consumption under the stoichiometric state. In addition, the present simulation includes the species conservation equation for the materialization of heat source and the estimation of smoke movement. From the results, the smoke flows are moving along the ceiling because of thermal buoyancy force and as time goes, the smoke gradually moves downward at the vicinity of the entrance. Moreover, without using ventilation, it is found that the smoke flows no longer spread across the cross-passages because the pressure in the non-accident tunnel is higher than that in the accident tunnel.

  • PDF

Field investigation and seismic analysis of a historical brick masonry minaret damaged during the Van Earthquakes in 2011

  • Muvafik, Murat
    • Earthquakes and Structures
    • /
    • v.6 no.5
    • /
    • pp.457-472
    • /
    • 2014
  • The paper presents the field investigations and seismic analyses of a historical masonry brick minaret damaged during October 23 (Erciş) and November 9 (Edremit), 2011 Van earthquakes in Turkey. Ulu Mosque Minaret located on Tebriz Kap1 Street in the city centre of Van, Turkey is selected for investigation. Two earthquakes hit the minaret within seventeen days, causing progressive damage. It was seen from the field investigations that the minaret was heavily damaged. To validate the field investigations, three dimensional finite element model of the minaret is constituted by ANSYS software using relievo drawings. Finite element model of the minaret is analyzed under the Van earthquake records to determine the seismic behavior. The displacements, maximum and minimum principal stresses and strains are obtained from the analyses and compared with field observations.

Numerical Investigation of Flowing Process for Regenerative Beat Exchanger of a Gas Turbine Engine (가스터빈 리제너레이토 내부유동에 관한 수치해석적 연구)

  • Kim Soo Yong;Kovalevsky Valeri P;Goldenberg Victor
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.4
    • /
    • pp.109-121
    • /
    • 2004
  • A distributed nonlinear mathematical model for investigation of regenerative heat exchangers of both a continuous and periodic operation is described in the paper. The non-iterative numerical integration scheme for conjugate unsteady heat exchange problem of one dimensional flows and two dimensional matrix wall conductivity is developed. Case study of a regenerative heat exchanger with a rotary ceramic matrix is presented. The range of optimum rotation rates of the regenerator providing the greatest calorific efficiency is determined.

Numerical Analysis of Non-Newtonian Behavior in the Fluid Film Layer of Bearing Lubrication (베어링 윤활 필름층의 비뉴튼성 거동에 대한 수치적 해석)

  • 김준현;김주현
    • Tribology and Lubricants
    • /
    • v.16 no.5
    • /
    • pp.341-350
    • /
    • 2000
  • The study reported in this paper deals with the development for parametric investigation of the influence of the rheological properties of the lubricant in the thermohydrodynamic (THD) film conditions which occur in slider and journal bearings. A parametric investigation based on a Bingham model with a shear yield stress which best fit the experimental pressure is performed for predicting the thickness of the shear Bone in lubricating films with fixed geometry between the stationary and moving surfaces. The results suggest that the shear yield stress for the lubricating film is proportional to the pressure developed in the film within the range of the investigated cases and the shear zone thickness which is of the same order of magnitude as that obtained by the empirical formula is significantly smaller than the fluid film thickness in the lubrication zone.

The investigation of Magnetohydrodynamic nanofluid flow with Arrhenius energy activation

  • Sharif, Humaira;Khadimallah, Mohamed A.;Naeem, Muhammad Nawaz;Hussain, Muzamal;Mahmoud, S.R.;Al-Basyouni, K.S.;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.10 no.5
    • /
    • pp.437-448
    • /
    • 2021
  • In this article, an analytically and numerically 3D nanoliquid flow by a porous rotatable disk is presented in the presence of gyrotactic microorganisms. The mathematical model in the form of partial differential system is transmuted into dimensionless form by utilizing the appropriate transformation. The homotopy analysis approach is applied to attain the analytic solution of the problem. The effect of promising parameters on velocity distribution, temperature profile, nanoparticles volume fraction and motile microorganism distribution field are evaluated through graphs and in tabular form. The existence of Brownian motion and thermophoresis impacts are more proficient for heat transfer enhancement. Further the unique features like heat absorption/generation and energy activation are also examined for the present flow problem. The obtained results are compared with the earliear investigation to check the accuracy of present model.

Theoretical and experimental investigation of piezoresistivity of brass fiber reinforced concrete

  • Mugisha, Aurore;Teomete, Egemen
    • Computers and Concrete
    • /
    • v.23 no.6
    • /
    • pp.399-408
    • /
    • 2019
  • Structural health monitoring is important for the safety of lives and asset management. In this study, numerical models were developed for the piezoresistive behavior of smart concrete based on finite element (FE) method. Finite element models were calibrated with experimental data collected from compression test. The compression test was performed on smart concrete cube specimens with 75 mm dimensions. Smart concrete was made of cement CEM II 42.5 R, silica fume, fine and coarse crushed limestone aggregates, brass fibers and plasticizer. During the compression test, electrical resistance change and compressive strain measurements were conducted simultaneously. Smart concrete had a strong linear relationship between strain and electrical resistance change due to its piezoresistive function. The piezoresistivity of the smart concrete was modeled by FE method. Twenty-noded solid brick elements were used to model the smart concrete specimens in the finite element platform of Ansys. The numerical results were determined for strain induced resistivity change. The electrical resistivity of simulated smart concrete decreased with applied strain, as found in experimental investigation. The numerical findings are in good agreement with the experimental results.

网络流行语"X+人"探析 - 从"打工人", "尾款人", "工具人"等谈起

  • Yu, Cheol
    • 중국학논총
    • /
    • no.71
    • /
    • pp.41-59
    • /
    • 2021
  • With the progress of social economy and science and technology, network media technology has developed rapidly, China has ushered in the network information age, and the network buzzwords emerged to reflect the interaction and influence between language and society. The network buzzwords of "X+ ren "indirectly show the social psychology and value orientation of modern people with their unique structural characteristics, semantic connotation and cultural deposits, and so on. Based on this, we have conducted a multi-angle investigation on the network buzzwords "X+ ren". This paper first analyzes the structure types and syntactic functions of the lexical model of "X+ ren ", then makes a semantic analysis of the lexical model of "X+ Ren ", and finally investigates the causes and influences of the popularity of "X+ ren ". Through the investigation, we believe that "X+ ren "will continue to grow, and "X+ ren" will continue to attract the attention of the academic community.