• Title/Summary/Keyword: model ensemble

Search Result 663, Processing Time 0.028 seconds

Assessment of compressive strength of high-performance concrete using soft computing approaches

  • Chukwuemeka Daniel;Jitendra Khatti;Kamaldeep Singh Grover
    • Computers and Concrete
    • /
    • v.33 no.1
    • /
    • pp.55-75
    • /
    • 2024
  • The present study introduces an optimum performance soft computing model for predicting the compressive strength of high-performance concrete (HPC) by comparing models based on conventional (kernel-based, covariance function-based, and tree-based), advanced machine (least square support vector machine-LSSVM and minimax probability machine regressor-MPMR), and deep (artificial neural network-ANN) learning approaches using a common database for the first time. A compressive strength database, having results of 1030 concrete samples, has been compiled from the literature and preprocessed. For the purpose of training, testing, and validation of soft computing models, 803, 101, and 101 data points have been selected arbitrarily from preprocessed data points, i.e., 1005. Thirteen performance metrics, including three new metrics, i.e., a20-index, index of agreement, and index of scatter, have been implemented for each model. The performance comparison reveals that the SVM (kernel-based), ET (tree-based), MPMR (advanced), and ANN (deep) models have achieved higher performance in predicting the compressive strength of HPC. From the overall analysis of performance, accuracy, Taylor plot, accuracy metric, regression error characteristics curve, Anderson-Darling, Wilcoxon, Uncertainty, and reliability, it has been observed that model CS4 based on the ensemble tree has been recognized as an optimum performance model with higher performance, i.e., a correlation coefficient of 0.9352, root mean square error of 5.76 MPa, and mean absolute error of 4.1069 MPa. The present study also reveals that multicollinearity affects the prediction accuracy of Gaussian process regression, decision tree, multilinear regression, and adaptive boosting regressor models, novel research in compressive strength prediction of HPC. The cosine sensitivity analysis reveals that the prediction of compressive strength of HPC is highly affected by cement content, fine aggregate, coarse aggregate, and water content.

Sound event detection model using self-training based on noisy student model (잡음 학생 모델 기반의 자가 학습을 활용한 음향 사건 검지)

  • Kim, Nam Kyun;Park, Chang-Soo;Kim, Hong Kook;Hur, Jin Ook;Lim, Jeong Eun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.5
    • /
    • pp.479-487
    • /
    • 2021
  • In this paper, we propose an Sound Event Detection (SED) model using self-training based on a noisy student model. The proposed SED model consists of two stages. In the first stage, a mean-teacher model based on an Residual Convolutional Recurrent Neural Network (RCRNN) is constructed to provide target labels regarding weakly labeled or unlabeled data. In the second stage, a self-training-based noisy student model is constructed by applying different noise types. That is, feature noises, such as time-frequency shift, mixup, SpecAugment, and dropout-based model noise are used here. In addition, a semi-supervised loss function is applied to train the noisy student model, which acts as label noise injection. The performance of the proposed SED model is evaluated on the validation set of the Detection and Classification of Acoustic Scenes and Events (DCASE) 2020 Challenge Task 4. The experiments show that the single model and ensemble model of the proposed SED based on the noisy student model improve F1-score by 4.6 % and 3.4 % compared to the top-ranked model in DCASE 2020 challenge Task 4, respectively.

Preliminary Result of Uncertainty on Variation of Flowering Date of Kiwifruit: Case Study of Kiwifruit Growing Area of Jeonlanam-do (기후변화에 따른 국내 키위 품종 '해금'의 개화시기 변동과 전망에 대한 불확실성: 전남 키위 주산지역을 중심으로)

  • Kim, Kwang-Hyung;Jeong, Yeo Min;Cho, Youn-Sup;Chung, Uran
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.1
    • /
    • pp.42-54
    • /
    • 2016
  • It is highly anticipated that warming temperature resulting from global climate change will affect the phenological pattern of kiwifruit, which has been commercially grown in Korea since the early 1980s. Here, we present the potential impacts of climate change on the variations of flowering day of a gold kiwifruit cultivar, Haegeum, in the Jeonnam Province, Korea. By running six global climate models (GCM), the results from this study emphasize the uncertainty in climate change scenarios. To predict the flowering day of kiwifruit, we obtained three parameters of the 'Chill-day' model for the simulation of Haegeum: $6.3^{\circ}C$ for the base temperature (Tb), 102.5 for chill requirement (Rc), and 575 for heat requirement (Rh). Two separate validations of the resulting 'Chill-day' model were conducted. First, direct comparisons were made between the observed flowering days collected from 25 kiwifruit orchards for two years (2014-15) and the simulated flowering days from the 'Chill-day' model using weather data from four weather stations near the 25 orchards. The estimation error between the observed and simulated flowering days was 5.2 days. Second, the model was simulated using temperature data extracted, for the 25 orchards, from a high-resolution digital temperature map, resulting in the error of 3.4 days. Using the RCP 4.5 and 8.5 climate change scenarios from six GCMs for the period of 2021-40, the future flowering days were simulated with the 'Chill-day' model. The predicted flowering days of Haegeum in Jeonnam were advanced more than 10 days compared to the present ones from multi-model ensemble, while some individual models resulted in quite different magnitudes of impacts, indicating the multi-model ensemble accounts for uncertainty better than individual climate models. In addition, the current flowering period of Haegeum in Jeonnam Province was predicted to expand northward, reaching over Jeonbuk and Chungnam Provinces. This preliminary result will provide a basis for the local impact assessment of climate change as more phenology models are developed for other fruit trees.

Research on ITB Contract Terms Classification Model for Risk Management in EPC Projects: Deep Learning-Based PLM Ensemble Techniques (EPC 프로젝트의 위험 관리를 위한 ITB 문서 조항 분류 모델 연구: 딥러닝 기반 PLM 앙상블 기법 활용)

  • Hyunsang Lee;Wonseok Lee;Bogeun Jo;Heejun Lee;Sangjin Oh;Sangwoo You;Maru Nam;Hyunsik Lee
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.11
    • /
    • pp.471-480
    • /
    • 2023
  • The Korean construction order volume in South Korea grew significantly from 91.3 trillion won in public orders in 2013 to a total of 212 trillion won in 2021, particularly in the private sector. As the size of the domestic and overseas markets grew, the scale and complexity of EPC (Engineering, Procurement, Construction) projects increased, and risk management of project management and ITB (Invitation to Bid) documents became a critical issue. The time granted to actual construction companies in the bidding process following the EPC project award is not only limited, but also extremely challenging to review all the risk terms in the ITB document due to manpower and cost issues. Previous research attempted to categorize the risk terms in EPC contract documents and detect them based on AI, but there were limitations to practical use due to problems related to data, such as the limit of labeled data utilization and class imbalance. Therefore, this study aims to develop an AI model that can categorize the contract terms based on the FIDIC Yellow 2017(Federation Internationale Des Ingenieurs-Conseils Contract terms) standard in detail, rather than defining and classifying risk terms like previous research. A multi-text classification function is necessary because the contract terms that need to be reviewed in detail may vary depending on the scale and type of the project. To enhance the performance of the multi-text classification model, we developed the ELECTRA PLM (Pre-trained Language Model) capable of efficiently learning the context of text data from the pre-training stage, and conducted a four-step experiment to validate the performance of the model. As a result, the ensemble version of the self-developed ITB-ELECTRA model and Legal-BERT achieved the best performance with a weighted average F1-Score of 76% in the classification of 57 contract terms.

Development of Stochastic Downscaling Method for Rainfall Data Using GCM (GCM Ensemble을 활용한 추계학적 강우자료 상세화 기법 개발)

  • Kim, Tae-Jeong;Kwon, Hyun-Han;Lee, Dong-Ryul;Yoon, Sun-Kwon
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.9
    • /
    • pp.825-838
    • /
    • 2014
  • The stationary Markov chain model has been widely used as a daily rainfall simulation model. A main assumption of the stationary Markov model is that statistical characteristics do not change over time and do not have any trends. In other words, the stationary Markov chain model for daily rainfall simulation essentially can not incorporate any changes in mean or variance into the model. Here we develop a Non-stationary hidden Markov chain model (NHMM) based stochastic downscaling scheme for simulating the daily rainfall sequences, using general circulation models (GCMs) as inputs. It has been acknowledged that GCMs perform well with respect to annual and seasonal variation at large spatial scale and they stand as one of the primary sources for obtaining forecasts. The proposed model is applied to daily rainfall series at three stations in Nakdong watershed. The model showed a better performance in reproducing most of the statistics associated with daily and seasonal rainfall. In particular, the proposed model provided a significant improvement in reproducing the extremes. It was confirmed that the proposed model could be used as a downscaling model for the purpose of generating plausible daily rainfall scenarios if elaborate GCM forecasts can used as a predictor. Also, the proposed NHMM model can be applied to climate change studies if GCM based climate change scenarios are used as inputs.

Development and Assessment of Dynamical Seasonal Forecast System Using the Cryospheric Variables (빙권요소를 활용한 겨울철 역학 계절예측 시스템의 개발 및 검증)

  • Shim, Taehyoun;Jeong, Jee-Hoon;Ok, Jung;Jeong, Hyun-Sook;Kim, Baek-Min
    • Atmosphere
    • /
    • v.25 no.1
    • /
    • pp.155-167
    • /
    • 2015
  • A dynamical seasonal prediction system for boreal winter utilizing cryospheric information was developed. Using the Community Atmospheric Model, version3, (CAM3) as a modeling system, newly developed snow depth initialization method and sea ice concentration treatment were implemented to the seasonal prediction system. Daily snow depth analysis field was scaled in order to prevent climate drift problem before initializing model's snow fields and distributed to the model snow-depth layers. To maximize predictability gain from land surface, we applied one-month-long training procedure to the prediction system, which adjusts soil moisture and soil temperature to the imposed snow depth. The sea ice concentration over the Arctic region for prediction period was prescribed with an anomaly-persistent method that considers seasonality of sea ice. Ensemble hindcast experiments starting at 1st of November for the period 1999~2000 were performed and the predictability gain from the imposed cryospheric informations were tested. Large potential predictability gain from the snow information was obtained over large part of high-latitude and of mid-latitude land as a result of strengthened land-atmosphere interaction in the modeling system. Large-scale atmospheric circulation responses associated with the sea ice concentration anomalies were main contributor to the predictability gain.

The Uncertainty of Extreme Rainfall in the Near Future and its Frequency Analysis over the Korean Peninsula using CMIP5 GCMs (CMIP5 GCMs의 근 미래 한반도 극치강수 불확실성 전망 및 빈도분석)

  • Yoon, Sun-kwon;Cho, Jaepil
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.10
    • /
    • pp.817-830
    • /
    • 2015
  • This study performed prediction of extreme rainfall uncertainty and its frequency analysis based on climate change scenarios by Coupled Model Intercomparison Project Phase 5 (CMIP5) for the selected nine-General Circulation Models (GCMs) in the near future (2011-2040) over the Korean Peninsula (KP). We analysed uncertainty of scenarios by multiple model ensemble (MME) technique using non-parametric quantile mapping method and bias correction method in the basin scale of the KP. During the near future, the extreme rainfall shows a significant gradually increasing tendency with the annual variability and uncertainty of extreme ainfall in the RCP4.5, and RCP8.5 scenarios. In addition to the probability rainfall frequency (such as 50 and 100-year return periods) has increased by 4.2% to 10.9% during the near future in 2040. Therefore, in the longer-term water resources master plan, based on the various climate change scenarios (such as CMIP5 GCMs) and its uncertainty can be considered for utilizing of the support tool for decision-makers in water-related disasters management.

An Uncertainty Assessment for Annual Variability of Precipitation Simulated by AOGCMs Over East Asia (AOGCM에 의해 모의된 동아시아지역의 강수 연변동성에 대한 불확실성 평가)

  • Shin, Jinho;Lee, Hyo-Shin;Kim, Minji;Kwon, Won-Tae
    • Atmosphere
    • /
    • v.20 no.2
    • /
    • pp.111-130
    • /
    • 2010
  • An uncertainty assessment for precipitation datasets simulated by Atmosphere-Ocean Coupled General Circulation Model (AOGCM) is conducted to provide reliable climate scenario over East Asia. Most of results overestimate precipitation compared to the observational data (wet bias) in spring-fall-winter, while they underestimate precipitation (dry bias) in summer in East Asia. Higher spatial resolution model shows better performances in simulation of precipitation. To assess the uncertainty of spatiotemporal precipitation in East Asia, the cyclostationary empirical orthogonal function (CSEOF) analysis is applied. An annual cycle of precipitation obtained from the CSEOF analysis accounts for the biggest variability in its total variability. A comparison between annual cycles of observed and modeled precipitation anomalies shows distinct differences: 1) positive precipitation anomalies of the multi-model ensemble (MME) for 20 models (thereafter MME20) in summer locate toward the north compared to the observational data so that it cannot explain summer monsoon rainfalls across Korea and Japan. 2) The onset of summer monsoon in MME20 in Korean peninsula starts earlier than observed one. These differences show the uncertainty of modeled precipitation. Also the comparison provides the criteria of annual cycle and correlation between modeled and observational data which helps to select best models and generate a new MME, which is better than the MME20. The spatiotemporal deviation of precipitation is significantly associated with lower-level circulations. In particular, lower-level moisture transports from the warm pool of the western Pacific and corresponding moisture convergence significantly are strongly associated with summer rainfalls. These lower-level circulations physically consistent with precipitation give insight into description of the reason in the monsoon of East Asia why behaviors of individually modeled precipitation differ from that of observation.

The study of foreign exchange trading revenue model using decision tree and gradient boosting (외환거래에서 의사결정나무와 그래디언트 부스팅을 이용한 수익 모형 연구)

  • Jung, Ji Hyeon;Min, Dae Kee
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.1
    • /
    • pp.161-170
    • /
    • 2013
  • The FX (Foreign Exchange) is a form of exchange for the global decentralized trading of international currencies. The simple sense of Forex is simultaneous purchase and sale of the currency or the exchange of one country's currency for other countries'. We can find the consistent rules of trading by comparing the gradient boosting method and the decision trees methods. Methods such as time series analysis used for the prediction of financial markets have advantage of the long-term forecasting model. On the other hand, it is difficult to reflect the rapidly changing price fluctuations in the short term. Therefore, in this study, gradient boosting method and decision tree method are applied to analyze the short-term data in order to make the rules for the revenue structure of the FX market and evaluated the stability and the prediction of the model.

Development of a software framework for sequential data assimilation and its applications in Japan

  • Noh, Seong-Jin;Tachikawa, Yasuto;Shiiba, Michiharu;Kim, Sun-Min;Yorozu, Kazuaki
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.39-39
    • /
    • 2012
  • Data assimilation techniques have received growing attention due to their capability to improve prediction in various areas. Despite of their potentials, applicable software frameworks to probabilistic approaches and data assimilation are still limited because the most of hydrologic modelling software are based on a deterministic approach. In this study, we developed a hydrological modelling framework for sequential data assimilation, namely MPI-OHyMoS. MPI-OHyMoS allows user to develop his/her own element models and to easily build a total simulation system model for hydrological simulations. Unlike process-based modelling framework, this software framework benefits from its object-oriented feature to flexibly represent hydrological processes without any change of the main library. In this software framework, sequential data assimilation based on the particle filters is available for any hydrologic models considering various sources of uncertainty originated from input forcing, parameters and observations. The particle filters are a Bayesian learning process in which the propagation of all uncertainties is carried out by a suitable selection of randomly generated particles without any assumptions about the nature of the distributions. In MPI-OHyMoS, ensemble simulations are parallelized, which can take advantage of high performance computing (HPC) system. We applied this software framework for several catchments in Japan using a distributed hydrologic model. Uncertainty of model parameters and radar rainfall estimates is assessed simultaneously in sequential data assimilation.

  • PDF