• 제목/요약/키워드: model control

검색결과 21,184건 처리시간 0.05초

모델참조 적응 퍼지제어기를 이용한 휠베이스 이동 로봇의 궤적 추적 제어 (A Trajectory Tracking Control of Wheeled Mobile Robot Using a Model Reference Adaptive Fuzzy Controller)

  • 김승우;서기성;조영완
    • 제어로봇시스템학회논문지
    • /
    • 제15권7호
    • /
    • pp.711-719
    • /
    • 2009
  • This paper presents a design scheme of torque control for wheeled mobile robot(WMR) to asymptotically track the target reference trajectory. By considering the kinematic model of WMR, trajectory tracking control generates the desired tracking trajectory, which is transformed into the command velocity vector for the real WMR to track the target reference trajectory. The dynamic equation of the state error between the target reference trajectory and the desired tracking trajectory is represented by Takagi-Sugeno fuzzy model, and this model is used as the reference model for the real mobile robot error dynamics to follow. The control parameters are updated by adaptive laws that are designed for the error states of the real WMR to asymptotically follow the states of reference error model for the desired tracking trajectory. The proposed control is applied to a typical wheeled mobile robot and simulation studies are carried out to verify the validity and effectiveness of the control scheme.

외란 적응 제어를 적용한 미사일 비선형 제어 (Nonlinear model inversion missile control with disturbance accommodating control)

  • 조현식;김인중;김진호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1500-1503
    • /
    • 1996
  • This paper combines the disturbance accommodating control(DAC) and nonlinear model inversion control for a skid-to-turn(STT) missile. The missile autopilot may be designed to be robust with respect to a variety of uncertainties. We proposes the two step control design method. Nonlinear model inversion control is used as the main design method. Due to the model uncertainties and external disturbances, the exact nonlinear model inversion can not be achieved. DAC is designed to detect, to identify, and to compensate these uncertainties. DAC's disturbance observer is linear. Thus it is easy to implement. It does not cause the convergence problem due to coexistence between the modeling uncertainties and external disturbances. 6 DOF simulation results show that the proposed method may improve the missile tracking performance.

  • PDF

수직3관절 로보트 매니풀레이터에 대하여 시변슬라이딩레짐을 사용한 가변구조 모델추종 적응제어의 응용 (An Application of Variable Structure Model Following Adaptive Control Using Time-Varying Sliding Regime to Robot Manipulator with Vertical 3 links)

  • 김중완;강대기;김병오;오현성;정희균
    • 한국정밀공학회지
    • /
    • 제11권6호
    • /
    • pp.158-167
    • /
    • 1994
  • The design concept of varaiable structure control is useful not only to stochasic systems but also to adaptive control systems. The Dynamic equation of vertical three linkage robot was derived. And it was simplyfied according to the scheme of control strategy. And we specify the form of model. Thereafter the error dynamic equation was derived between the real state of the plant and state of the model. Some simulations were performed to control robot manipulator applying the methodology of the variable structure model following adaptive control.

  • PDF

동적마찰 섭동을 갖는 자율이동 로봇 시스템의 강인적응제어 및 안정성 해석 (Robust Adaptive Control of Autonomous Robot Systems with Dynamic Friction Perturbation and Its Stability Analysis)

  • 조현철;이권순
    • 제어로봇시스템학회논문지
    • /
    • 제15권1호
    • /
    • pp.72-81
    • /
    • 2009
  • This paper presents a robust adaptive control method using model reference control strategy against autonomous robot systems with random friction nature. We approximate a nonlinear robot system model by means of a feedback linearization approach to derive nominal control law. We construct a Least Square (LS) based observer to estimate friction dynamics online and then represent a perturbed system model with respect to approximation error between an actual friction and its estimation. Model reference based control design is achieved to implement an auxiliary control in order for reducing control error in practice due to system perturbation. Additionally, we conduct theoretical study to demonstrate stability of the perturbed system model through Lyapunov theory. Numerical simulation is carried out for evaluating the proposed control methodology and demonstrating its superiority by comparing it to a traditional nominal control method.

쌍일차 모델을 이용한 스팀개질 플랜트의 적응예측제어에 관한 연구 (A study on the adaptive predictive control of steam-reforming plant using bilinear model)

  • 오세천;여영구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.156-159
    • /
    • 1996
  • An adaptive predictive control for steam-reforming plant which consist of a steam-gas reformer and a waste heat steam-boiler was studied by using MIMO bilinear model. The simulation experiments of the process identification were performed by using linear and bilinear models. From the simulation results it was found that the bilinear model represented the dynamic behavior of a steam-reforming plant very well. ARMA model was used in the process identification and the adaptive predictive control. To verify the performance and effectiveness of the adaptive predictive controller proposed in this study the simulation results of steam-reforming plant control based on bilinear model were compared to those of linear model. The simulation results showed that the adaptive predictive controller based on bilinear model provides better performance than those of linear model.

  • PDF

Trajectory Following Control Using Cogging Force Model in Linear Positioning System

  • Chung, Myung-Jin;Gweon, Dae-Gab
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제3권3호
    • /
    • pp.62-68
    • /
    • 2002
  • To satisfy the requirement of the one axis linear positioning system, which is following control of the desired trajectory without following error and is the high positioning accuracy, feed-forward loop having cogging force model is proposed. In the one axis linear positioning system with linear PM motor, cogging force acting as disturbance is modeled analytically. Analytic model of cogging force is verified by result measured from positioning system constructed with linear PM motor. Measured result is very similar with proposed analytic model. Cogging force model is used as feet forward loop in control scheme of linear positioning system. Cogging force feed-forward'loop is obtained from analytic model of cogging farce. Trajectory following error is reduced from 300nm to 100nm by applying the proposed cogging farce feed-forward loop. By using analytic model of cogging force, the control scheme is simplified. Also this analytic model is applicable to calculation of characteristic value of positioning system in design process.

단위전류당최대토크 제어기의 성능 비교를 통한 경부하에서 대안모델의 유도전동기 동특성 예측에 관한 연구 (Study on Predicting Induction Motor Characteristics of Alternate QD Model Under Light Loads by Comparing Performance of MTPA Control)

  • 권춘기;김동식
    • 전력전자학회논문지
    • /
    • 제21권1호
    • /
    • pp.65-71
    • /
    • 2016
  • This study investigates a high-accuracy alternate QD model to estimate the characteristics of induction motor under light loads. To demonstrate the usefulness of the alternate QD model, a maximum torque per amp (MTPA) control based on the alternate model is shown to outperform MTPA control based on the standard QD model. The experimental study conducted in this work exhibits that the MTPA control based on the alternate QD model tracks torque commands between 20 Nm and 30 Nm with 5% error, whereas the MTPA control based on the standard QD model generates torques lower by over 23% compared with the aforementioned torque commands. This result indicates that the alternate QD model is a highly accurate model for induction motors under light loads.

반능동 현수장치의 실시간 시뮬레이션용 궤도차량 모델 개발 (Development of a Tracked Vehicle Model for Real-time Simulation of Semi-active Suspension System)

  • 손영일;이종호;송병석
    • 한국자동차공학회논문집
    • /
    • 제11권4호
    • /
    • pp.135-143
    • /
    • 2003
  • In this study, a real-time simulation model was developed for tracked vehicles with in-arm type semi-active hydro-pneumatic suspension unit using MATLAB S-functions. Since the vehicle model uses relative coordinates and massless link elements, the developed model has an enhanced analytic time performance. Through the comparison of simulation results with multi-body software(DADS), the vehicle model is verified. A controller using on-off skyhook control algorithm is designed with the pilot-centre]led proportional valve based on conventional damper characteristics. Exploiting the developed tracked vehicle model with other subsystem model such as a controller model, a suspension unit model, and a test road model, computer simulations are carried out. Control simulation results with the developed tracked vehicle model show that the semi-active suspension control system has a better performance than the conventional suspension system.

외란 관측기를 이용한 모델 예견 기반의 전지형 크레인 자동조향 제어알고리즘 개발 (Development of an Automatic Steering-Control Algorithm based on the MPC with a Disturbance Observer for All-Terrain Cranes)

  • 오광석;서자호
    • 드라이브 ㆍ 컨트롤
    • /
    • 제14권2호
    • /
    • pp.9-15
    • /
    • 2017
  • The steering systems of all-terrain cranes have been developed with various control strategies for the stability and drivability. To optimally control the input steering angle, an accurate mathematical model that represents the actual crane dynamics is required. The derivation of an accurate mathematical model to optimally control the steering angle, however, is difficult since the steering-control strategy generally varies with the magnitude of the crane's longitudinal velocity, and the postures of the crane's working parts vary while it is being driven. To address this problem, this paper proposes an automatic steering-control algorithm that is based on the MPC (model predictive control) with a disturbance observer for all-terrain cranes. The designed disturbance observer of this study was used to estimate the error between the base steering model and the actual crane. A model predictive controller was used for the computation of the optimal steering angle, along with the use of the base steering model with an estimated uncertainty. Performance evaluations of the designed control algorithms were conducted based on a curved-path scenario in the Matlab/Simulink environment. The performance-evaluation results show a sound reference-path-tracking performance despite the large uncertainties.

Vibration Suppression Control for an Articulated Robot: Effects of Model-Based Control Applied to a Waist Axis

  • Itoh, Masahiko;Yoshikawa, Hiroshi
    • International Journal of Control, Automation, and Systems
    • /
    • 제1권3호
    • /
    • pp.263-270
    • /
    • 2003
  • This paper deals with a control technique of eliminating the transient vibration of a waist axis of an articulated robot. This technique is based on a model-based control in order to establish the damping effect on the mechanical part. The control model is related to the velocity control loop, and it is composed of reduced-order electrical and mechanical parts. Using this model, the velocity of the load is estimated, which is converted to the motor shaft. The difference between the estimated load speed and the motor speed is calculated dynamically, and it is added to the velocity command to suppress the transient vibration of a waist axis of the robot arm. The function of this technique is to increase the cut-off frequency of the system and the damping ratio at the driven machine part. This control model is easily obtained from design or experimental data and its algorithm can be easily installed in a DSP. This control technique is applied to a waist axis of an articulated robot composed of a harmonic drive gear reducer and a robot arm with 5 degrees of freedom. Simulations and experiments show satisfactory control results to reduce the transient vibration at the end-effector.