• Title/Summary/Keyword: model concrete

Search Result 5,283, Processing Time 0.032 seconds

Theoretical prediction on thickness distribution of cement paste among neighboring aggregates in concrete

  • Chen, Huisu;Sluys, Lambertus Johannes;Stroeven, Piet;Sun, Wei
    • Computers and Concrete
    • /
    • v.8 no.2
    • /
    • pp.163-176
    • /
    • 2011
  • By virtue of chord-length density function from the field of statistical physics, this paper introduced a quantitative approach to estimate the distribution of cement paste thickness between aggregates in concrete. Dynamics mixing method based on molecular dynamics was employed to generate one model structure, then image analysis algorithm was used to obtain the distribution of thickness of cement paste in model structure for the purpose of verification. By comparison of probability density curves and cumulative probability curves of the cement paste thickness among neighboring aggregates, it is found that the theoretical results are consistent with the simulation. Furthermore, for the model mortar and concrete mixtures with practical volume fraction of Fuller-type aggregate, this analytical formula was employed to predict the influence of aggregate volume fraction and aggregate fineness. And evolution of its mean values were also investigated with the variation of volume fraction of aggregate as well as the fineness of aggregates in model mortars and concretes.

Modelling of chloride diffusion in saturated concrete

  • Tsao, Wen-Hu;Huang, Nai-Ming;Liang, Ming-Te
    • Computers and Concrete
    • /
    • v.15 no.1
    • /
    • pp.127-140
    • /
    • 2015
  • The process of chloride ingress in saturated concrete was presented by a previous study that used a mathematical model for the same as that concrete. This model is to be studied chloride ion diffusion which is considered as a chemical phenomenon and is to be represented the chloride diffusion process to be a nonlinear partial differential equation (PDE). In this paper, this nonlinear PDE is solved by the Kirchhoff transformation to render into a linear PDE. This linear PDE associated with initial and boundary conditions is also solved by the Laplace transformation to obtain an analytical solution. To verify the serviceability and reliability of this proposed method, the practical application should be supplied. The input parameters were cited from the previous study. The free chloride concentration profiles obtained by the analytical solution of mathematical model for saturated concretes after 24 and 120 hrs of exposure were compared with the previous study. The predicted results obtained from proposed method have a tendency with experimental results obtained by the previous study and trend toward numerical results approximated by finite difference technique.

Structural response of corroded RC beams: a comprehensive damage approach

  • Finozzi, Irene Barbara Nina;Berto, Luisa;Saetta, Anna
    • Computers and Concrete
    • /
    • v.15 no.3
    • /
    • pp.411-436
    • /
    • 2015
  • In this work, a comprehensive approach to model the structural behaviour of Reinforced Concrete (RC) beams subjected to reinforcement corrosion is proposed. The coupled environmental - mechanical damage model developed by some of the authors is enhanced for considering the main effects of corrosion on concrete, on composite interaction between reinforcement bars and concrete and on steel reinforcement. This approach is adopted for reproducing a set of experimental tests on RC beams with different corrosion degrees. After the simulation of the sound beams, the main parameters involved in the relationships characterizing the effects of corrosion are calibrated and tested, referring to one degraded beam. Then, in order to validate the proposed approach and to assess its ability to predict the structural response of deteriorated elements, several corroded beams are analyzed. The numerical results show a good agreement with the experimental ones: in particular, the proposed model properly predicts the structural response in terms of both failure mode and load-deflection curves, with increasing corrosion level.

Numerical simulation of external pre-stressed steel-concrete composite beams

  • Moscoso, Alvaro M.;Tamayo, Jorge L.P.;Morsch, Inacio B.
    • Computers and Concrete
    • /
    • v.19 no.2
    • /
    • pp.191-201
    • /
    • 2017
  • External pre-stressing is often used in strengthening or retrofitting of steel-concrete composite beams. In this way, a proper numerical model should be able to trace the completely nonlinear response of these structures at service and ultimate loads. A three dimensional finite element model based on shell elements for representing the concrete slab and the steel beam are used in this work. Partial interaction at the slab-beam interface can be taken into account by using special beam-column elements as shear connectors. External pre-stressed tendons are modeled by using one-dimensional catenary elements. Contact elements are included in the analysis to represent the slipping at the tendon-deviator locations. Validation of the numerical model is established by simulating seven pre-stressed steel-concrete composite beams with experimental results. The model predictions agree well with the experimental results in terms of collapse loads, path failures and cracking lengths at negative moment regions due to service loads. Finally, the accuracy of some simplified formulas found in the specialized literature to predict cracking lengths at interior supports at service loading and for the evaluation of ultimate bending moments is also examined in this work.

Reinforced concrete corbels strengthened with carbon fiber reinforced plastics

  • Lu, Wen-Yao;Yu, Hsin-Wan;Chen, Chun-Liang;Yang, Tzong-Hwan;Lin, Yu-Sin
    • Computers and Concrete
    • /
    • v.10 no.3
    • /
    • pp.259-276
    • /
    • 2012
  • A total of nine reinforced concrete corbels were tested, in this study. Six were externally strengthened with carbon fiber reinforced plastics (CFRP), in the horizontal direction. The cross-sectional area of CFRP and the shear span-to-effective depth ratios are the parameters considered, in this study. Test results indicate that the higher the cross-sectional area of CFRP, the higher is the shear strength of the corbels, and the lower the shear span-to-effective depth ratios, the higher is the shear strength of corbels. The shear strength predicted by the design provisions in section 11.8 of the ACI Code, the strut-and-tie model in Appendix A of the ACI Code, and the softened strut-and-tie (SST) model were compared with the test results. The comparisons show that both the strut-and-tie model in Appendix A of the ACI Code, and the SST model can accurately predict the shear strength of reinforced concrete corbels, strengthened with CFRP.

Comparison of machine learning algorithms to evaluate strength of concrete with marble powder

  • Sharma, Nitisha;Upadhya, Ankita;Thakur, Mohindra S.;Sihag, Parveen
    • Advances in materials Research
    • /
    • v.11 no.1
    • /
    • pp.75-90
    • /
    • 2022
  • In this paper, functionality of soft computing algorithms such as Group method of data handling (GMDH), Random forest (RF), Random tree (RT), Linear regression (LR), M5P, and artificial neural network (ANN) have been looked out to predict the compressive strength of concrete mixed with marble powder. Assessment of result suggests that, the overall performance of ANN based model gives preferable results over the different applied algorithms for the estimate of compressive strength of concrete. The results of coefficient of correlation were maximum in ANN model (0.9139) accompanied through RT with coefficient of correlation (CC) value 0.8241 and minimum root mean square error (RMSE) value of ANN (4.5611) followed by RT with RMSE (5.4246). Similarly, other evaluating parameters like, Willmott's index and Nash-sutcliffe coefficient value of ANN was 0.9458 and 0.7502 followed by RT model (0.8763 and 0.6628). The end result showed that, for both subsets i.e., training and testing subset, ANN has the potential to estimate the compressive strength of concrete. Also, the results of sensitivity suggest that the water-cement ratio has a massive impact in estimating the compressive strength of concrete with marble powder with ANN based model in evaluation with the different parameters for this data set.

Nonlinear finite element model of the beam-to-column connection for precast concrete frames with high ratio of the continuity tie bars

  • Sergio A. Coelho;Sergio A. Coelho
    • Computers and Concrete
    • /
    • v.31 no.1
    • /
    • pp.53-69
    • /
    • 2023
  • The rotational stiffness of a semi-rigid beam-to-column connection plays an important role in the reduction of the second-order effects in the precast concrete skeletal frames. The aim of this study is to present a detailed nonlinear finite element study to reproduce the experimental response of a semi-rigid precast beam-to-column connection composed by corbel, dowel bar and continuity tie bars available in the literature. A parametric study was carried using four arrangements of the reinforcing tie bars in the connection, including high ratio of the continuity tie bars passing around the column in the cast-in-place concrete. The results from the parametric study were compared to analytical equations proposed to evaluate the secant rotational stiffness of beam-to-column connections. The good agreement with the experimental results was obtained, demonstrating that the finite element model can accurately predict the structural behaviour of the beam-to-column connection despite its complex geometric configuration. The secant rotational stiffness of the connection was good evaluated by the analytical model available in the literature for ratio of the continuity tie bars of up to 0.69%. Precast beam-to-column connection with a ratio of the continuity tie bars higher than 1.4% had the secant stiffness overestimated. Therefore, an adjustment coefficient for the effective depth of the crack at the end of the beam was proposed for the analytical model, which is a function of the ratio of the continuity tie bars.

On Modeling for Nonlinear Analysis of Shear Wall Element in Shear Wall Structures (철근콘크리트 벽식 구조물에서 전단벽의 탄소성 해석용 모델화 방법의 검토)

  • 전대한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.291-296
    • /
    • 2000
  • In this paper a relatively simple and reliable wall models are investigated, which are suitable to be efficiently incorporated in a practical nonlinear seismic analysis of reinforced concrete shear wall structural systems. Four types of analogous frames have been selected for the elastic stress analysis. Three types of macro-elements model which include wide-column model, truss model and Kabeyasawa model, are chosen for the use in nonlinear analysis. A numerical analysis is carried out for six stories plane coupled wall structure. Analysis results indicate that macro-elements wall model is effective and suitable for simulating stress in elastic analysis. In inelastic analysis, the yielding strength have little effect on different wall model, and the effect on post-yielding stiffness in story shear-drift relationship depend on force-deformation properties of macro-elements.

  • PDF

Effect of Dam-Foundation Boundary Modeling on Cracking Damage Behavior of Concrete Dams (댐체-기초 경계 모델링에 따른 콘크리트댐의 지진 균열거동)

  • Lee, Jee-Ho
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.26-33
    • /
    • 2005
  • In this paper, a computational model for nonlinear crack damage analysis of concrete gravity dam-foundation boundary region subjected to earthquake loading is suggested. An enhanced model based on the Lee-Fenves plastic-damage model is used as the inelastic material model for a concrete dam structure and rock foundation. The suggested model is implemented numerically and used for computational earthquake simulation of Koyna dam, which was severly damaged from the strong earthquake in 1967. From the numerical result it is demonstrated that the suggested computational model can realistically represent crack initiation and propagation in the dam-foundation boundary region.

  • PDF

Shear Response Prediction of the Reinforced Concrete Beams using Truss Models for Membrane Element Analysis (막요소 해석에 사용된 트러스 모델을 이용한 철근콘크리트 보의 전단거동 예측)

  • Kim, Sang-Woo;Lee, Jung-Yoon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.3 no.1 s.7
    • /
    • pp.77-85
    • /
    • 2003
  • This paper presents a truss model that can predict the shear behavior of reinforced concrete (RC) beams subjected to the combined actions of shear and flexure. Unlike other truss models, the proposed truss model, TATM, takes into account the effect of the flexural moment on the shear strength of RC beams with different shear span-to-depth ratios. To check the successfulness of the proposed model experimentally obtained stress shear strain curves were compared to the predicted ones using the proposed truss model. Furthermore, the shear strengths of 170 RC test beams with variable shear span-to-depth ratios were compared to the shear strengths as given by the truss model reported in this paper.

  • PDF