• Title/Summary/Keyword: model concrete

Search Result 5,283, Processing Time 0.037 seconds

Prediction of Stress-Strain Relation and Evolution of Compliance of Concrete by a Micromechanical Model (미세역학이론에 의한 콘크리트의 응력-변형도 관계와 연성도의 예측에 관한 연구)

  • 김진구
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.3
    • /
    • pp.147-155
    • /
    • 1996
  • In this study a model for the constitutive relation of a plane concrete is proposed using a micromechariical model. In this model a precursor crack is assumed to exist in the aggregate-cement paste interface, and the LEFM is used to predict the nucleation of the bond cracks and the grow th of mortar cracks. For computational convenience the bond crack-mortar crack configuration is transformed into a straight crack with a point force in the middle. 'The overall compliance and the cons,titutive relation are predicted from the damage due to microcracks, and the predicted stress-strain curves are compared with some experimental data. According to the results, the model predictions are better for under tensile loading than under compression, for high, strength concrete than for normal strength concrete.

Modelling the rheological behaviour of fresh concrete: An elasto-viscoplastic finite element approach

  • Chidiac, S.E.;Habibbeigi, F.
    • Computers and Concrete
    • /
    • v.2 no.2
    • /
    • pp.97-110
    • /
    • 2005
  • Rheological behaviour of fresh concrete is an important factor in controlling concrete quality. It is recognized that the measurement of the slump is not a sufficient test method to adequately characterize the rheology of fresh concrete. To further understand the slump measurement and its relationship to the rheological properties, an elasto-viscoplastic, 2-D axisymmetric finite element (FE) model is developed. The FE model employs the Bingham material model to simulate the flow of a slump test. An experimental program is carried out using the Slump Rate Machine (SLRM_II) to evaluate the finite element simulation results. The simulated slump-versus-time curves are found to be in good agreement with the measured data. A sensitivity study is performed to evaluate the effects of yield stress, plastic viscosity and cone withdrawal rate on the measured flow curve using the FE model. The results demonstrate that the computed yield stress compares well with reported experimental data. The flow behaviour is shown to be influenced by the yield stress, plastic viscosity and the cone withdrawal rate. Further, it is found that the value of the apparent plastic viscosity is different from the true viscosity, with the difference depending on the cone withdrawal rate. It is also confirmed that the value of the final slump is most influenced by the yield stress.

Analytical model for hybrid RC frame-steel wall systems

  • Mo, Y.L.;Perng, S.F.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.2
    • /
    • pp.127-139
    • /
    • 2003
  • Reinforced concrete buildings with shearwalls are very efficient to resist earthquake disturbances. In general, reinforced concrete frames are governed by flexure and shearwalls are governed by shear. If a structure included both frames and shearwalls, it is generally governed by shearwalls. However, the ductility of ordinary reinforced concrete is very limited. To improve the ductility, a series of tests on framed shearwalls made of corrugated steel was performed previously and the experimental results were compared with ordinary reinforced concrete frames and shearwalls. It was found that ductility of framed shearwalls could be greatly improved if the thickness of the corrugated steel wall is appropriate to the surrounding reinforced concrete frame. In this paper, an analytical model is developed to predict the horizontal load-displacement relationship of hybrid reinforced concrete frame-steel wall systems according to the analogy of truss models. This analytical model is based on equilibrium and compatibility conditions as well as constitutive laws of corrugated steel. The analytical predictions are compared with the results of tests reported in the previous paper. It is found that proposed analytical model can predict the test results with acceptable accuracy.

Modeling of chloride diffusion in concrete considering wedge-shaped single crack and steady-state condition

  • Yang, Keun-Hyeok;Cheon, Ju Hyun;Kwon, Seung-Jun
    • Computers and Concrete
    • /
    • v.19 no.2
    • /
    • pp.211-216
    • /
    • 2017
  • Crack on concrete surface allows more rapid penetration of chlorides. Crack width and depth are dominant parameters for chloride behavior, however their effects on chloride penetration are difficult to quantify. In the present work, the previous anisotropic (1-D) model on chloride diffusion in concrete with single crack is improved considering crack shape and roughness. In the previous model, parallel-piped shape was adopted for crack shape in steady-state condition. The previous model with single crack is improved considering wedge shape of crack profile and roughness. For verifying the proposed model, concrete samples for nuclear power plant are prepared and various crack widths are induced 0.0 to 1.2 mm. The chloride diffusion coefficients in steady-state condition are evaluated and compared with simulation results. The proposed model which can handle crack shape and roughness factor is evaluated to decrease chloride diffusion and can provide more reasonable results due to reduced area of crack profile. The roughness effect on diffusion is evaluated to be 10-20% of reduction in chloride diffusion.

Shear Behavior Prediction of Reinforced Concrete Beams by Transformation Angle Truss Modul (변환각 트러스 모델에 의한 철근콘크리트 보의 전단거동 예측에 관한 연구)

  • 김상우;이정윤
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.130-138
    • /
    • 2001
  • This paper presents on the shear behavior prediction of reinforced concrete beams using Transformation Angle Truss Model (TATM). The TATM can evaluate the stress-strain relationships for cracked concrete by transforming stresses and strains for principal plane into those over the crack surfaces. This proposed analytical method simplifies the Fixed Angle Softened Truss Model (FA-STM) and removes the limitation of applicability of the FA-STM. The shear.strength and strain of reinforced concrete beams are predicted by using the TATM. For the verification of proposed method, experimental results of reinforced concrete beams were compared with theoretical results by the TATM, FA-STM and Rotating Angle Softened Truss Model (RA-STM).

Inelastic analysis of concrete beams strengthened with various fiber reinforced polymer (FRP) systems

  • Terro, M.J.;El-Hawary, M.M.;Hamoush, S.A.
    • Computers and Concrete
    • /
    • v.2 no.3
    • /
    • pp.177-188
    • /
    • 2005
  • This paper presents a numerical model developed to evaluate the load-deflection and moment-curvature relationship for concrete beams strengthened externally with four different Fiber Reinforced Polymer (FRP) composite systems. The developed model considers the inelastic behavior of concrete section subjected to a combined axial force and bending moment. The model accounts for tensile strength of concrete as defined by the modulus of rupture of concrete. Based on the adopted material constitutive relations, the model evaluates the sectional curvature as a function of the applied axial load and bending moment. Deflections along the beam are evaluated using a finite difference technique taking into account support conditions. The developed numerical technique has been tested on a cantilever beam with a transverse load applied at its end. A study of the behavior of the beam with tension reinforcement compared to that with FRP areas giving an equivalent ultimate moment has been carried out. Moreover, cracking of the section in the tensile region at ultimate load has also been considered. The results indicated that beams reinforced with FRP systems possess more ductility than those reinforced with steel. This ductility, however, can be tuned by increasing the area of FRP or by combining different FRP layers.

Obtaining equivalent fracture toughness of concrete using uniaxial compression test

  • Li, Zongjin;Zhao, Yanhua
    • Computers and Concrete
    • /
    • v.7 no.4
    • /
    • pp.387-402
    • /
    • 2010
  • From typical stress-axial strain curve and stress-volume strain curve of a concrete under uniaxial compression, the initiation and localization of microcracks within the interior of the specimen can be identified. The occurrence of random microcrack indicates the end of the linear elasticity, and the localization of microcrack implies formation of major crack, which triggers the onset of unstable crack propagation. The interval between initiation and localization of microcracks is characterized by a stable microcrack growth. Based on fracture behavior observed from a uniaxial compressive test of a concrete cylinder, a model has been developed to extract fundamental fracture properties of a concrete, i.e. the equivalent fracture toughness and the size of fracture process zone. The introduction of cracking Poisson's ratio accounts for tensile failure characteristics of concrete even under uniaxal compression. To justify the validity of the model proposed, tests on three-point bending have been performed to obtain the fracture toughness in accordance with two parameter fracture model and double-K fracture model. Surprisingly, it yields favorably comparable results and provides an encouraging alternative approach to determine fracture properties for concretes.

A numerical tension-stiffening model for ultra high strength fiber-reinforced concrete beams

  • Na, Chaekuk;Kwak, Hyo-Gyoung
    • Computers and Concrete
    • /
    • v.8 no.1
    • /
    • pp.1-22
    • /
    • 2011
  • A numerical model that can simulate the nonlinear behavior of ultra high strength fiber-reinforced concrete (UHSFRC) structures subject to monotonic loadings is introduced. Since engineering material properties of UHSFRC are remarkably different from those of normal strength concrete and engineered cementitious composite, classification of the mechanical characteristics related to the biaxial behavior of UHSFRC, from the designation of the basic material properties such as the uniaxial stress-strain relationship of UHSFRC to consideration of the bond stress-slip between the reinforcement and surrounding concrete with fiber, is conducted in this paper in order to make possible accurate simulation of the cracking behavior in UHSFRC structures. Based on the concept of the equivalent uniaxial strain, constitutive relationships of UHSFRC are presented in the axes of orthotropy which coincide with the principal axes of the total strain and rotate according to the loading history. This paper introduces a criterion to simulate the tension-stiffening effect on the basis of the force equilibriums, compatibility conditions, and bond stress-slip relationship in an idealized axial member and its efficiency is validated by comparison with available experimental data. Finally, the applicability of the proposed numerical model is established through correlation studies between analytical and experimental results for idealized UHSFRC beams.

The Evaluation of Adiabatic Temperature rise in Concrete by Using Blended Cement Hydration Model (혼합시멘트 수화모델을 이용한 콘크리트의 단열온도상승 예측에 관한 연구)

  • Wang, Xiaoyong;Cho, Hyeong-Kyu;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.31-32
    • /
    • 2011
  • Granulated slag from metal industries and fly ash from the combustion of coal are industrial by-products that have been widely used as mineral admixtures in normal and high strength concrete. Due to the reaction between calcium hydroxide and fly ash or slag, the hydration of concrete containing fly ash or slag is much more complex compared with that of Portland cement. In this paper, the production of calcium hydroxide in cement hydration and its consumption in the reaction of mineral admixtures is considered in order to develop a numerical model that simulates the hydration of concrete containing fly ash or slag. The heat evolution rates of fly ash- or slag-blended concrete is determined by the contribution of both cement hydration and the reaction of the mineral admixtures. Furthermore, the temperature distribution and temperature history in hardening blended concrete are evaluated based on the degree of hydration of the cement and the mineral admixtures. The proposed model is verified through experimental data on concrete with different water-to-cement ratios and mineral admixture substitution ratios.

  • PDF

A Basic Study on Data Estimation Model of Production-installation Using Mathematical Algorithm in Free-Form Concrete Panel (비정형 콘크리트 패널의 수학적 알고리즘을 이용한 생산-설치 데이터 생성모델 기초연구)

  • Son, Seung-Hyun;Kim, Sun-Kuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.166-167
    • /
    • 2016
  • Unlike the past, supported by the development of digital technologies, free-form buildings are frequently designed with creative thoughts of architectural designers. However, there are some difficulties preventing successfully completion of projects, like reduced productivity and increased construction duration and cost upon the process of producing and installing concrete panels for free-form structures. In particular, there are active studies on the CNC machine for production of free-form concrete panels. Yet, it is difficult to effectively and easily come up with information on production and installation of free-form, curve-surfaced panels which are difficult to be mathematically defined. This requires a lot of manpower and time to implement the curved surfaces of free-form buildings as intended by architects. Accordingly, it needs a model that can effectively create production-installation data of free-form concrete panels for successful free-form building projects. Thus, the purpose of the study is to suggest data estimation model of production-installation using mathematical algorithm in free-form concrete panels. The study results will realize effective production and installation of free-form concrete members, allowing improved productivity of projects, reduced cost and shortened construction duration.

  • PDF