• 제목/요약/키워드: model concrete

검색결과 5,283건 처리시간 0.037초

Loose and Dense Aggregate Particle Packing Models in Cement and Concrete

  • Kim, Jong-Cheol;Lim, Chang-Sung;Auh, Keun-Ho
    • The Korean Journal of Ceramics
    • /
    • 제6권1호
    • /
    • pp.1-5
    • /
    • 2000
  • Particle packing properties are important to develop high technology products in the field of cement and concrete. Two types of particle packing models for aggregates with sand and cement were introduced: the loose and the dense aggregate packing. Aggregate packing models with randomly generated sand and cement particles in the interstices of aggregates fit the Furnas model very well. Different aggregate models show different packing properties with the experimental results. Main reason for the difference with the experimental results is due to sand rearrangement in the loose aggregate packing model and to aggregate relaxation in the dense aggregate packing model. In the experimental situation, aggregates seem to be more disordered and have a relaxed packing structure in the dense packing, and sands seem to have a more rearranged packing structure in the loose packing model.

  • PDF

Reinforcement detailing of a corbel via an integrated strut-and-tie modeling approach

  • Ozkal, Fatih Mehmet;Uysal, Habib
    • Computers and Concrete
    • /
    • 제19권5호
    • /
    • pp.589-597
    • /
    • 2017
  • Strut-and-tie modeling method, which evolved on truss-model approach, has generally been preferred for the design of complex reinforced concrete structures and structural elements that have critical shear behavior. Some structural members having disturbed regions require exceptional detailing for all support and loading conditions, such as the beam-column connections, deep beams, short columns or corbels. Considering the general expectation of exhibiting brittle behavior, corbels are somewhat dissimilar to other shear critical structures. In this study, reinforcement layout of a corbel model was determined by the participation of structural optimization and strut-and-tie modeling methods, and an experimental comparison was performed against a conventionally designed model.

Joint Shear Behavior Prediction for RC Beam-Column Connections

  • LaFave, James M.;Kim, Jae-Hong
    • International Journal of Concrete Structures and Materials
    • /
    • 제5권1호
    • /
    • pp.57-64
    • /
    • 2011
  • An extensive database has been constructed of reinforced concrete (RC) beam-column connection tests subjected to cyclic lateral loading. All cases within the database experienced joint shear failure, either in conjunction with or without yielding of longitudinal beam reinforcement. Using the experimental database, envelope curves of joint shear stress vs. joint shear strain behavior have been created by connecting key points such as cracking, yielding, and peak loading. Various prediction approaches for RC joint shear behavior are discussed using the constructed experimental database. RC joint shear strength and deformation models are first presented using the database in conjunction with a Bayesian parameter estimation method, and then a complete model applicable to the full range of RC joint shear behavior is suggested. An RC joint shear prediction model following a U.S. standard is next summarized and evaluated. Finally, a particular joint shear prediction model using basic joint shear resistance mechanisms is described and for the first time critically assessed.

A new SDOF method of one-way reinforced concrete slab under non-uniform blast loading

  • Wang, Wei;Zhang, Duo;Lu, Fangyun;Liu, Ruichao
    • Structural Engineering and Mechanics
    • /
    • 제46권5호
    • /
    • pp.595-613
    • /
    • 2013
  • A new effective model for calculation of the equivalent uniform blast load for non-uniform blast load such as close-in explosion of a one-way square and rectangle reinforced concrete slab is proposed in this paper. The model is then validated using single degree of freedom (SDOF) system with the experiments and blast tests for square slabs and rectangle slabs. Test results showed that the model is accurate in predicting the damage level on the tested RC slabs under the given explosive charge weight and stand-off distance especially for close-in blast load. The results are also compared with those obtained by conventional SDOF analysis and finite element (FE) analysis using solid elements. It is shown that the new model is more accurate than the conventional SDOF analysis and is running faster than the FE analysis.

소형 관통자의 콘크리트 표적 수직충돌 침투특성 연구 (A Study on Normal Penetration Characteristics of Small Projectiles in Concrete Targets)

  • 김용석;여환곤
    • 한국군사과학기술학회지
    • /
    • 제14권2호
    • /
    • pp.321-325
    • /
    • 2011
  • After investigating the analytic model to predict penetration depth, we propose an analytical model which can be used in estimating the normal penetration characteristics of small projectiles, when they are impacted to the concrete targets with ordnance velocities. The major parameters of this model are nose factor of penetrator, compressive strength and density of targets, and impact velocity. We can predict accelerations, velocities, displacements of projectiles and applied forces by this proposed model. Estimated penetration depths were shown 5% error. We also verified the usefulness of the new method with laboratory impact test data.

Fire design of concrete encased columns: Validation of an advanced calculation model

  • Zaharia, R.;Dubina, D.
    • Steel and Composite Structures
    • /
    • 제17권6호
    • /
    • pp.835-850
    • /
    • 2014
  • The fire resistance of composite steel and concrete structures may be determined by using the simplified methods provided in EN 1994-1-2. For the particular situations not covered by the standard, an advanced calculation model might be applied, using special purpose programs for the analysis of structures in fire. The validation of these programs has always been an important issue for software developers, but also for designers and authorities. Clause 4.4.4 from EN 1994-1-2 refers to the validation of the advanced calculation models and states that these models must be validated through relevant test results. The paper presents the calculation of fire resistance of the composite columns in a high-rise building built in Romania, and focusses on the validation of the calculation model (computer program SAFIR), for this particular case. This validation, asked by the Romanian authorities, considers the available experimental results of a fire test, performed on a similar composite steel-concrete column.

유효 영역 판별 모델에 따른 데이터베이스 기반 콘크리트 최적 배합 선정 (Optimum Concrete Mix-proportion based on Database according to Assessment Model for Effective Region)

  • 이방연;김재홍;김진근;이성태
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.909-912
    • /
    • 2006
  • This paper examined the applicability of convex hull, which is defined as the minimal convex polygon including all points, to assessment model for effective region. In order to validate the applicability of the convex hull to assessment model for effective region, a genetic algorithm was adopted as a optimum technique, and an artificial neural network was adopted as a prediction model for material properties. The mix-proportion obtained from the proposed technique is more reasonable than that obtained from previous work.

  • PDF

전단연결재의 내화성능에 대한 유한요소해석 (Finite element analysis of shear connection in composite beams exposed to fire)

  • 임옥근;최승관
    • 공학기술논문지
    • /
    • 제11권4호
    • /
    • pp.279-285
    • /
    • 2018
  • A shear connection between the steel beam and concrete slab determines the stability of composite beams. An extensive numerical study to evaluate the resistance of the shear connection in a solid slab at high temperature was conducted. Three-dimensional thermo-mechanical finite element models were developed using a dynamic explicit method and concrete damaged plasticity model. Temperature-dependent plasticity parameters of the concrete model were proposed, and the accuracy of the developed model was obtained against experimental data. This investigation has revealed that a stud shearing failure occurs regardless of temperatures, and its shearing location changes in accordance with a rise in temperature. A new strength reduction formula has been presented to estimate the resistance of the shear connection at high temperatures.

Required ties in continuous RC beams to resist progressive collapse by catenary action

  • Alrudaini, Thaer M.S.
    • Structural Engineering and Mechanics
    • /
    • 제78권4호
    • /
    • pp.403-411
    • /
    • 2021
  • Ties are mandated by many design guidelines and codes to prevent the progressive collapse of buildings initiated by local failures. This study develops a model to estimate catenary/cable action capacity and the required ties in continuous reinforced concrete beams to bridge above the potential failed interior columns. The developed model is derived based on virtual work method and verified using test results presented in the literature. Also, parametric investigations are conducted to estimate the required ties in continuous reinforced concrete beams supporting one-way slab systems. A comparison is conducted between the estimated tie reinforcement using the developed model and that provided by satisfying the integrity provisions of the ACI 318-14 (2014) code. It is shown that the required tie reinforcements to prevent progressive collapse using the developed model are obviously larger than that provided by the integrity requirements of the ACI 318-14 (2014) code. It has been demonstrated that the increases in the demanded tie reinforcements over that provided by satisfying ACI 318-14 (2014) integrity provisions are varied between 1.01 and 1.46.

A Fiber Model Based on Secondary Development of ABAQUS for Elastic-Plastic Analysis

  • Shi, Yan-Li;Li, Hua-Wei;Wang, Wen-Da;Hou, Chao
    • 국제강구조저널
    • /
    • 제18권5호
    • /
    • pp.1560-1576
    • /
    • 2018
  • With the aim to provide an efficient platform for the elastic-plastic analysis of steel structures, reinforced concrete (RC) structures and steel-concrete composite structures, a program iFiberLUT based on the fiber model was developed within the framework of ABAQUS. This program contains an ABAQUS Fiber Generator which can automatically divide the beam and column cross sections into fiber sections, and a material library which includes several concrete and steel uniaxial material models. The range of applications of iFiberLUT is introduced and its feasibility is verified through previously reported test data of individual structural members as well as planar steel frames, RC frames and composite frames subjected to various loadings. The simulation results indicate that the developed program is able to achieve high calculation accuracy and favorable convergence within a wide range of applications.