• Title/Summary/Keyword: model Optimization

Search Result 5,666, Processing Time 0.033 seconds

Application of Linear Tracking to the Multi-reservours System Operation in Han River for Hydro-power Maximization (한강수계 복합 저수지 시스템의 최적 수력발전 운영을 위한 LINEAR TRACKING의 적용)

  • Yu, Ju-Hwan;Kim, Jae-Han;Jeong, Gwan-Su
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.5
    • /
    • pp.579-591
    • /
    • 1999
  • The operation of a reservoir system is necessary for establishing the operation rule as well as designing the reservoirs for water resources planning or management. Increasingly complex water resource systems require more advanced operation techniques. As a result, various techniques have been introduced and applied until now. In this study Linear Tracking model based on optimal control theory is applied to the operation of the largest scale multi-reservoir system in the Han river and its applicability proved. This system normally supplies the water resources required downstream for hydro-power and plays a role in satisfying the water demand of the Capital region. For the optimal use of the water resources the Linear Tracking model is designed with the objective to maximize the hydro-power energy subject to the water supply demand. The multi-reservoir system includes the seven main reservoirs in IIan river such as Hwachon, Soyanggang, Chunchon, Uiam, Cheongpyong, Chungju and Paldang. These reservoirs have been monthly operated for the past 21 years. Operation results are analyzed with respect to both hydro"power energy and water supply. Additionally the efficiency of the technique is assessed.sessed.

  • PDF

Signal and Noise Analysis of Indirect-Conversion Digital Radiography Detectors Using Linear-systems Transfer Theory (선형시스템 전달이론을 이용한 간접변환방식 디지털 래디오그라피 디텍터의 신호 및 잡음 분석)

  • Yun, Seung-Man;Lim, Chang-Hwy;Han, Jong-Chul;Joe, Ok-La;Kim, Jung-Min;Kim, Ho-Kyung
    • Progress in Medical Physics
    • /
    • v.21 no.3
    • /
    • pp.261-273
    • /
    • 2010
  • For the use of Indirect-conversion CMOS (complementary metal-oxide-semiconductor) detectors for digital x-ray radiography and their better designs, we have theoretically evaluated the spatial-frequency-dependent detective quantum efficiency (DQE) using the cascaded linear-systems transfer theory. In order to validate the developed model, the DQE was experimentally determined by the measured modulation-transfer function (MTF) and noise-power spectrum, and the estimated incident x-ray fluence under the mammography beam quality of W/Al. From the comparison between the theoretical and experimental DQEs, the overall tendencies were well agreed. Based on the developed model, we have investigated the DQEs values with respect to various design parameters of the CMOS x-ray detector such as phosphor quantum efficiency, Swank noise, photodiode quantum efficiency and the MTF of various scintillator screens. This theoretical approach is very useful tool for the understanding of the developed imaging systems as well as helpful for the better design or optimization for new development.

Greedy Heuristic Algorithm for the Optimal Location Allocation of Pickup Points: Application to the Metropolitan Seoul Subway System (Pickup Point 최적입지선정을 위한 Greedy Heuristic Algorithm 개발 및 적용: 서울 대도시권 지하철 시스템을 대상으로)

  • Park, Jong-Soo;Lee, Keum-Sook
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.116-128
    • /
    • 2011
  • Some subway passengers may want to have their fresh vegetables purchased through internet at a service facility within the subway station of the Metropolitan Seoul subway system on the way to home, which raises further questions about which stations are chosen to locate service facilities and how many passengers can use the facilities. This problem is well known as the pickup problem, and it can be solved on a traffic network with traffic flows which should be identified from origin stations to destination stations. Since flows of the subway passengers can be found from the smart card transaction database of the Metropolitan Seoul smart card system, the pickup problem in the Metropolitan Seoul subway system is to select subway stations for the service facilities such that captured passenger flows are maximized. In this paper, we have formulated a model of the pickup problem on the Metropolitan Seoul subway system with subway passenger flows, and have proposed a fast heuristic algorithm to select pickup stations which can capture the most passenger flows in each step from an origin-destination matrix which represents the passenger flows. We have applied the heuristic algorithm to select the pickup stations from a large volume of traffic network, the Metropolitan Seoul subway system, with about 400 subway stations and five millions passenger transactions daily. We have obtained not only the experimental results in fast response time, but also displayed the top 10 pickup stations in a subway guide map. In addition, we have shown that the resulting solution is nearly optimal by a few more supplementary experiments.

  • PDF

Dust collection optimization of tunnel cleaning vehicle with cyclone-based prefilter (사이클론 전처리부를 지닌 터널집진차량의 집진효율 최적화)

  • Jeong, Wootae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.679-686
    • /
    • 2018
  • A new dust cleaning vehicle is needed to remove fine and ultra-fine particulate matter in subway tunnels. Therefore, the recently developed tunnel cleaning vehicle is equipped with an efficient suction system and cyclone-based prefilter to handle ultra-fine particles. To treat various sizes of particulate matter with an underbody suction system, this paper proposes a cyclone-based prefilter in the suction system and validates the dust removal efficiency through Computational Fluid Dynamics (CFD) analysis using ANSYS FLUENT. Using the created surface and volume mesh, various particle sizes, materials, and fan flow rates, the particles were tracked in the flow with a discrete phase model. As a result, the dust cleaning vehicle at a normal operational speed of 5km/h requires at least a fan flow rate of $1500m^3/min$ and 100mm of suction inlet height from the tunnel track floor. Those suction modules and cyclone-based prefilters in the dust cleaning vehicle reduces the dust accumulation load of the electric precipitator and helps remove the accumulated fine and ultra-fine dust in the subway tunnel.

A Study of Production Technology of Digital Contents upon the Platform Integration : Focusing on Cross - Platform Game (플랫폼 통합에 따른 디지털콘텐츠 제작기술 경향연구 : 크로스 플랫폼게임(Cross-Platform Game) 사례를 중심으로)

  • Han, Chang-Wan
    • Cartoon and Animation Studies
    • /
    • s.14
    • /
    • pp.151-164
    • /
    • 2008
  • Cross platform game has brought about the expansion of game market, which results in technology innovation overcoming the limit of game consumption. The new model integrates both off and online game services. Gamers can now enjoy game service regardless of age, time, and space. If the technology evolution model of digital contents like cross-platform game engine can provide contents for several platform at the same time, the interactive service can be utilized into maximum level. It is also necessary to allocate, switch data as well as to innovate the transmission technology of data according to each platform. Providing the same contents for several platform as many as possible can be the most suitable strategy to enhance the efficiency and profits. However if the interactive service can be accomplished completely, the development of data switching technology and distribution should be made. To be a leader in the next digital contents market, one should develop the network engine technology which can embody the optimization of consumption in the interactive network service.

  • PDF

Performance Simulation of Motorcycle Engine Exhaust Heat Recovery System using Thermoelectric Element (열전소자를 이용한 모터사이클용 엔진 배기 폐열 회수 시스템 성능 해석)

  • Lee, Moo-Yeon;Kim, Kihyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.695-701
    • /
    • 2018
  • Research into exhaust heat recovery has been actively carried out to improve the thermal efficiency of internal combustion engines. In this study, the performance of thermoelectric generation from exhaust heat recovery for motorcycle engines was analyzed by 1-D thermo-fluid simulation. GT-SUITE, which was developed by Gamma Tech., was used for the simulation of the internal combustion engine and thermoelectric generation system. The basic performance of the engine was analyzed in the range of engine speed of 1000~7000 rpm and engine load of 0~100%. The ratio of exhaust heat energy to fuel chemical energy was found to be about 40~60%. A combined simulation of the engine model and thermoelectric generation model was carried out to analyze the voltage, current and power generated by the thermoelectric material. The generation characteristics of the thermoelectric material was dominantly affected by the exhaust gas temperature. The maximum generated power of the current thermoelectric generation system was found to be about 2.2% of the total exhaust heat energy. The design optimization of the thermoelectric generation system will be carried out to maximize its power generation and economic feasibility.

Automated Schedulability-Aware Mapping of Real-Time Object-Oriented Models to Multi-Threaded Implementations (실시간 객체 모델의 다중 스레드 구현으로의 스케줄링을 고려한 자동화된 변환)

  • Hong, Sung-Soo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.2
    • /
    • pp.174-182
    • /
    • 2002
  • The object-oriented design methods and their CASE tools are widely used in practice by many real-time software developers. However, object-oriented CASE tools require an additional step of identifying tasks from a given design model. Unfortunately, it is difficult to automate this step for a couple of reasons: (1) there are inherent discrepancies between objects and tasks; and (2) it is hard to derive tasks while maximizing real-time schedulability since this problem makes a non-trivial optimization problem. As a result, in practical object-oriented CASE tools, task identification is usually performed in an ad-hoc manner using hints provided by human designers. In this paper, we present a systematic, schedulability-aware approach that can help mapping real-time object-oriented models to multi-threaded implementations. In our approach, a task contains a group of mutually exclusive transactions that may possess different periods and deadline. For this new task model, we provide a new schedulability analysis algorithm. We also show how the run-time system is implemented and how executable code is generated in our frame work. We have performed a case study. It shows the difficulty of task derivation problem and the utility of the automated synthesis of implementations as well as the Inappropriateness of the single-threaded implementations.

Optimization of Manufacturing Method for a Fiber Type of Biosorbent from Sludge Waste (폐슬러지로부터 섬유형 생체흡착제 제조방법의 최적화)

  • Seo, Ji Hae;Kim, Namgyu;Park, Munsik;Lee, Sunkyung;Park, Donghee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.9
    • /
    • pp.641-647
    • /
    • 2014
  • In this study, sludge waste which has a difficulty in treating it was used to manufacture a fiber type of biosorbent. To solve the problems such as the release of organic pollutants and the difficulty in separating solid from treated water, entrapment method using Ca-alginate was used to immobilize sludge waste. Considering ease of manufacture as well as improvement of adsorptive ability, the biosorbent was manufactured in the form of fiber type. Optimum immobilization condition for minimizing the amount of alginate used and maximizing the performance of biosorbent was determined to be 10 g/L alginate concentration, 40 g/L sludge concentration, and 0.3-0.4 mm fiber diameter. The maximum Cd(II) uptake of the biosorbent was 60.73 mg/g. Pseudo-second-order kinetic model and Langmuir isotherm model adequately described the dynamic and equilibrium behaviors of Cd(II) biosorption onto the biosorbent, respectively. In conclusion, sludge waste generated from wastewater treatment process is a cheap raw material for the manufacture of biosorbent which can be used to remove toxic heavy metals from industrial wastewaters efficiently.

Development of Machine Learning-Based Platform for Distillation Column (증류탑을 위한 머신러닝 기반 플랫폼 개발)

  • Oh, Kwang Cheol;Kwon, Hyukwon;Roh, Jiwon;Choi, Yeongryeol;Park, Hyundo;Cho, Hyungtae;Kim, Junghwan
    • Korean Chemical Engineering Research
    • /
    • v.58 no.4
    • /
    • pp.565-572
    • /
    • 2020
  • This study developed a software platform using machine learning of artificial intelligence to optimize the distillation column system. The distillation column is representative and core process in the petrochemical industry. Process stabilization is difficult due to various operating conditions and continuous process characteristics, and differences in process efficiency occur depending on operator skill. The process control based on the theoretical simulation was used to overcome this problem, but it has a limitation which it can't apply to complex processes and real-time systems. This study aims to develop an empirical simulation model based on machine learning and to suggest an optimal process operation method. The development of empirical simulations involves collecting big data from the actual process, feature extraction through data mining, and representative algorithm for the chemical process. Finally, the platform for the distillation column was developed with verification through a developed model and field tests. Through the developed platform, it is possible to predict the operating parameters and provided optimal operating conditions to achieve efficient process control. This study is the basic study applying the artificial intelligence machine learning technique for the chemical process. After application on a wide variety of processes and it can be utilized to the cornerstone of the smart factory of the industry 4.0.

Design of a wind turbine generator with low cogging torque by using evolution strategy (진화론적 알고리즘을 이용한 코깅토크가 적은 풍력발전기의 설계)

  • Park, Ju-Gyeong;Cha, Guee-Soo;Lee, Hee-Joon;Kim, Yong-Sub
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.755-760
    • /
    • 2016
  • The demand for independent generators using renewable energy has been increasing. Among those independent generators, small wind turbine generators have been actively developed. Permanent magnets are generally used for small wind turbine generators to realize a simple structure and small volume. On the other hand, cogging torque is included due to the structure of the permanent magnet synchronous machine, which can be the source of noise and vibration. The cogging torque can be varied by the shape of the permanent magnet and core, and it can be reduced using the appropriate design techniques. This paper proposes a design technique that can reduce the cogging torque by changing the shape of the permanent magnets for SPMSM (Surface Permanent Magnet Synchronous Motor), which is used widely for small wind turbine generators. Evolution Strategy, which is one of non-deterministic optimization techniques, was adopted to find the optimal shape of the permanent magnets that can reduce the cogging torque. The angle and outer diameter of permanent magnet were set as the design variable. A 300W class wind turbine generator, whose pole/slot combination was 8 poles/18 slots, was designed with the proposed design technique. The properties of the generator, including the cogging torque and output voltage, were calculated. The calculation results showed that the cogging torque of the optimized model was reduced compared to that of the initial model. The design technique proposed by this paper can be an effective measure to reduce the cogging torque.