• 제목/요약/키워드: mode shapes

검색결과 1,150건 처리시간 0.028초

비균질 탄성지반 위에 놓인 보-기둥의 자유진동 (Free Vibration of Beam-Columns on Non-Homogeneous Foundation)

  • 이병구;오상진;이태은
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 1999년도 Proceedings of the 1999 Annual Conference The Korean Society of Agricutural Engineers
    • /
    • pp.206-211
    • /
    • 1999
  • The purpose of this study is to investigate the natural frequencies and mode shapes of beam-columns on the non-homogeneous foundaion. The beam model is based on the classical Bernoulli-Euler beam theory. The linear foundation modulus is chosen as the non-homogeneous foundation in this study . The differentidal equation goeverning free vibrations of such beam-columns subjected to axial load is derived and solved numerically for calculting the natural frquencies and mode shapes. In numerical fivekinds of end constraint are considered, and the lowest four natural frquencies and corresponding mode shape are obtained as the non-dimensional forms.

  • PDF

Investigation on deck-stay interaction of cable-stayed bridges with appropriate initial shapes

  • Liu, Ming-Yi;Lin, Li-Chin;Wang, Pao-Hsii
    • Structural Engineering and Mechanics
    • /
    • 제43권5호
    • /
    • pp.691-709
    • /
    • 2012
  • This paper provides a variety of viewpoints to illustrate the mechanism of the deck-stay interaction with the appropriate initial shapes of cable-stayed bridges. Based on the smooth and convergent bridge shapes obtained by the initial shape analysis, the one-element cable system (OECS) and multi-element cable system (MECS) models of the Kao Ping Hsi Bridge in Taiwan are developed to verify the applicability of the analytical model and numerical formulation from the field observations in the authors' previous work. For this purpose, the modal analysis of the two finite element models are conducted to calculate the natural frequency and normalized mode shape of the individual modes of the bridge. The modal coupling assessment is also performed to obtain the generalized mass ratios among the structural components for each mode of the bridge. The findings indicate that the coupled modes are attributed to the frequency loci veering and mode localization when the "pure" deck-tower frequency and the "pure" stay cable frequency approach one another, implying that the mode shapes of such coupled modes are simply different from those of the deck-tower system or stay cables alone. The distribution of the generalized mass ratios between the deck-tower system and stay cables are useful indices for quantitatively assessing the degree of coupling for each mode. These results are demonstrated to fully understand the mechanism of the deck-stay interaction with the appropriate initial shapes of cable-stayed bridges.

Effects of macroporosity and double porosity on noise control of acoustic cavity

  • Sujatha, C.;Kore, Shantanu S.
    • Advances in aircraft and spacecraft science
    • /
    • 제3권3호
    • /
    • pp.351-366
    • /
    • 2016
  • Macroperforations improve the sound absorption performance of porous materials in acoustic cavities and in waveguides. In an acoustic cavity, enhanced noise reduction is achieved using porous materials having macroperforations. Double porosity materials are obtained by filling these macroperforations with different poroelastic materials having distinct physical properties. The locations of macroperforations in porous layers can be chosen based on cavity mode shapes. In this paper, the effect of variation of macroporosity and double porosity in porous materials on noise reduction in an acoustic cavity is presented. This analysis is done keeping each perforation size constant. Macroporosity of a porous material is the fraction of area covered by macro holes over the entire porous layer. The number of macroperforations decides macroporosity value. The system under investigation is an acoustic cavity having a layer of poroelastic material rigidly attached on one side and excited by an internal point source. The overall sound pressure level (SPL) inside the cavity coupled with porous layer is calculated using mixed displacement-pressure finite element formulation based on Biot-Allard theory. A 32 node, cubic polynomial brick element is used for discretization of both the cavity and the porous layer. The overall SPL in the cavity lined with porous layer is calculated for various macroporosities ranging from 0.05 to 0.4. The results show that variation in macroporosity of the porous layer affects the overall SPL inside the cavity. This variation in macroporosity is based on the cavity mode shapes. The optimum range of macroporosities in poroelastic layer is determined from this analysis. Next, SPL is calculated considering periodic and nodal line based optimum macroporosity. The corresponding results show that locations of macroperforations based on mode shapes of the acoustic cavity yield better noise reduction compared to those based on nodal lines or periodic macroperforations in poroelastic material layer. Finally, the effectiveness of double porosity materials in terms of overall sound pressure level, compared to equivolume double layer poroelastic materials is investigated; for this the double porosity material is obtained by filling the macroperforations based on mode shapes of the acoustic cavity.

Free vibrations of inclined arches using finite elements

  • Chucheepsakul, Somchai;Saetiew, Wasuroot
    • Structural Engineering and Mechanics
    • /
    • 제13권6호
    • /
    • pp.713-730
    • /
    • 2002
  • This paper presents a finite element approach for determining the natural frequencies for planar inclined arches of various shapes vibrating in three-dimensional space. The profile of inclined arches, represented by undeformed centriodal axis of cross-section, is defined by the equation of plane curves expressed in the rectangular coordinates which are : circular, parabolic, sine, elliptic, and catenary shapes. In free vibration state, the arch is slightly displaced from its undeformed position. The linear relationship between curvature-torsion and axial strain is expressed in terms of the displacements in three-dimensional space. The finite element discretization along the span length is used rather than the total are length. Numerical results for arches of various shapes are given and they are in good agreement with those reported in literature. The natural frequency parameters and mode shapes are reported as functions of two nondimensional parameters: the span to cord length ratio (e) and the rise to cord length ratio (f).

건전성 평가를 위한 대형 트러스 구조물의 모드분석 (Modal Analysis of a Large Truss for Structural Integrity)

  • 박수용
    • 한국항해항만학회지
    • /
    • 제32권3호
    • /
    • pp.215-221
    • /
    • 2008
  • 구조물의 대표적 동적특성인 고유진동수 및 모드형상은 손상평가, 구조계추정기법 등과 결합한 구조건전성 평가분야에서 매우 중요한 기초 자료로 활용되고 있다. 그러나 해양구조물이나 대경간 교량과 같은 대형 구조물의 경우 진동원을 정확히 계측하기 힘들기 때문에 소규모의 구조물에 많이 쓰이는 기존의 모달 테스트 기법으로는 구조물의 진동특성을 구할 수 없다. 본 논문에서는 경간이 긴 대형 트러스 구조물을 대상으로 가속도 응답만으로 고유진동수 및 모드형상을 추출할 수 있는 방법을 연구하였다. 트러스 구조물의 수치해석 모델을 이용하여 가속도 응답 및 주파수 응답함수의 생성과정, 모드분석을 통한 고유진동수 및 모드형상 추출과정을 상세히 설명하였다. 제안한 방법으로 얻은 모드형상은 고유치 해석으로부터 계산된 모드형상과 비교하여 정확성을 검증하였으며, 모의 손상을 통한 손상평가기법에 적용하여 타당성을 입증하였다.

서해대교 사장교의 동특성 추출 : I. 모드형상 (Modal Parameter Extraction of Seohae Cable-stayed Bridge : I. Mode Shape)

  • 김병화;박민석;이일근
    • 대한토목학회논문집
    • /
    • 제28권5A호
    • /
    • pp.631-639
    • /
    • 2008
  • 본 논문은 서해대교 사장교의 보강형에 대한 고해상도 다점 모드형상을 TDD기법을 이용하여 추출한 사례를 소개한다. 상시진동에 대한 진동시험이 실시되었으며, 총 72개의 센서위치에서 수직방향 가속도 시간응답을 계측할 수 있는 계측 통신망이 구축되었다. 계측된 가속도 시간응답에 대하여 TDD기법을 적용하여 총 24차 수직방향 모드형상이 추출되었다. 추출된 모드형상은 현재 운용중인 상시모니터링 시스템에서는 계측되지 못한 많은 모드들을 포함하고 있다. 장대교량과 같이 대형구조물의 고해상도 모드형상 추출에는 다른 여러 가지 동특성 추출기법보다 TDD기법이 매우 효과적인 것을 확인 할 수 있었다.

유한요소법을 이용한 종형 구조물의 동적거동 및 음향거동에 관한 연구 (A Study on Dynamic and Acoustic Behavior of Beel Type Structure Using Finite Element Method)

  • 정석주
    • 소음진동
    • /
    • 제6권4호
    • /
    • pp.447-456
    • /
    • 1996
  • Dynamic characteristics of the bell-type structure including acoustic effects and transient dynamic problems were analyzed numerically. Natural frequencies, mode shapes and transient dynamic analysis used the finite element method with 3-D general shell element. Mode shapes and stress distributions of transient dynamic analysis were expressed by computer graphics. The method using this study was evaluated by comparision of theoretical results at reference papers(14), (15) and the experimental test using Fast Fourier Transform analyzer. Vibrational modes governing acoustic characteristics of the typical bell-type structure depended on the first flexural mode(4-0 mode) and the second flexural mode(6-0 mode). Asymmetric effects by Dangiwas, acoustic holes gave rise to beat frequencies, and the Dangjwa was found to be most effective. When impact load acted on the bell, stress concentration occured at the rim part of bell. It was found that the bell type structure should be designed thickly at the rim part in order to prevent impact load from stress concentration.

  • PDF

Detection of delamination damage in composite beams and plates using wavelet analysis

  • Bombale, B.S.;Singha, M.K.;Kapuria, S.
    • Structural Engineering and Mechanics
    • /
    • 제30권6호
    • /
    • pp.699-712
    • /
    • 2008
  • The effectiveness of wavelet transform in detecting delamination damages in multilayered composite beams and plates is studied here. The damaged composite beams and plates are modeled in finite element software ABAQUS and the first few mode shapes are obtained. The mode shapes of the damaged structures are then wavelet transformed. It is observed that the distribution of wavelet coefficients can identify the damage location of beams and plates by showing higher values of wavelet coefficients at the position of damage. The effectiveness of the method is studied for different boundary conditions, damage location and size for single as well as multiple delaminations in composite beams and plates. It is observed that both discrete wavelet transform (DWT) and continuous wavelet transform (CWT) can detect the presence and location of the damaged region from the mode shapes of the structures. DWT may be used to approximately evaluate the size of the delamination area, whereas, CWT is efficient to detect smaller delamination areas in composites.

Prediction of unmeasured mode shapes and structural damage detection using least squares support vector machine

  • Kourehli, Seyed Sina
    • Structural Monitoring and Maintenance
    • /
    • 제5권3호
    • /
    • pp.379-390
    • /
    • 2018
  • In this paper, a novel and effective damage diagnosis algorithm is proposed to detect and estimate damage using two stages least squares support vector machine (LS-SVM) and limited number of attached sensors on structures. In the first stage, LS-SVM1 is used to predict the unmeasured mode shapes data based on limited measured modal data and in the second stage, LS-SVM2 is used to predicting the damage location and severity using the complete modal data from the first-stage LS-SVM1. The presented methods are applied to a three story irregular frame and cantilever plate. To investigate the noise effects and modeling errors, two uncertainty levels have been considered. Moreover, the performance of the proposed methods has been verified through using experimental modal data of a mass-stiffness system. The obtained damage identification results show the suitable performance of the proposed damage identification method for structures in spite of different uncertainty levels.

Novel techniques for improving the interpolation functions of Euler-Bernoulli beam

  • Chekab, Alireza A.;Sani, Ahmad A.
    • Structural Engineering and Mechanics
    • /
    • 제63권1호
    • /
    • pp.11-21
    • /
    • 2017
  • In this paper, the efficiency and the accuracy of classical (CE) and high order (HE) beam element are improved by introducing two novel techniques. The first proposed element (FPE) provides an alternative for (HE) by taking the mode shapes of the clamped-clamped (C-C) beam into account. The second proposed element (SPE) which could be utilized instead of (CE) and (HE) considers not only the mode shapes of the (C-C) beam but also some virtual nodes. It is numerically proven that the eigenvalue problem and the frequency response function for Euler-Bernoulli beam are obtained more accurate and efficient in contrast to the traditional ones.