• Title/Summary/Keyword: mode coupling

Search Result 781, Processing Time 0.031 seconds

Structural Modification for Vehicle Interior Noise Reduction Using Vibration Response Sensitivity Analysis

  • Park, Yong-Hwa;Cheung, Wan-Sup;Park, Youn-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.3E
    • /
    • pp.3-11
    • /
    • 2000
  • A structural modification technique for reducing structure-borne noise of vehicles using a sensitivity analysis is suggested. To estimate the noises generated by the vibration response, a semi structure-acoustic coupling analysis was exploited. As a result of the coupling analysis, severe noise generating positions are identified whose vibrations should be cured through structural modifications. Formulation for the sensitivity analysis of those severe vibration responses with respect to the design changes is derived to enhance the vibration response. Special attention is given in this paper to the use of the experimentally measured vibration responses in the sensitivity analysis. As a result of the proposed method, the structural modifications can be peformed accurately by using experimental data instead of using the finite element method though the higher vibration modes are considered as long as the vibration measurement and acoustic mode calculations are accurate. Effectiveness of this method was examined using an example model by experiments.

  • PDF

A design and fabrication of active phased array antenna for beam scanning using injection-locking coupled oscillators (Injection-Locking Coupled Oscillators를 이용한 빔 주사 용 능동 위상배열안테나의 설계 및 제작)

  • 이두한;김교헌;홍의석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.8
    • /
    • pp.1622-1631
    • /
    • 1997
  • A 3-stages Active Microstrip Phased Array Antenn(AMPAA) is implemented using Injection-Locking Coupled Oscillators(ILCO). The AMPAA is a beam scanning active antenna with capability of electrical scanning by frequency varation of ILCO. The synchronization of resonance frequencies in array elements is occured by ILCO, and the ILCO amplifies the injection signal and functions as a phase shifter. The microstrip ptch is operated as a radiation element. The unilateral amplifier is a mutual coupling element of AMPAA, eliminates the reverse locking signal and controls the locking bandwidth of ILCO. The possibility of Monolithic Microwave Integrated Circuits(MMIC) of T/R module is proposed by simplified and integrated fabrication process of AMPAA. The 0.75.$lambda_{0}$ is fixed for a mutual coupling space to wide the scanning angle and minimize the multi-mode. The AMPAA has beam scanning angle of 31.4.deg., HPBW(Half Power Beam Widths) of 26.deg., directive gain of 13.64dB and side lobe of -16.5dB were measured, respectively.

  • PDF

Advanced techniques of solution nuclear magnetic resonance spectroscopy for structural investigation of protein-protein interaction

  • Sugiki, Toshihiko;Lee, Young-Ho
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.22 no.4
    • /
    • pp.76-81
    • /
    • 2018
  • Investigation of the protein-protein interaction mode at atomic resolution is essential for understanding on the underlying functional mechanisms of proteins as well as for discovering druggable compounds blocking deleteriou interprotein interactions. Solution NMR spectroscopy provides accurate and precise information on intermolecular interactions even for weak and transient interactions, and it is also markedly useful for examining the change in the conformation and dynamics of target proteins upon binding events. In this mini-review, we comprehensively describe three unique and powerful methods of solution NMR spectroscopy, paramagnetic relaxation enhancement (PRE), pseudo-contact shift (PCS), and residual dipolar coupling (RDC), for the study on protein-protein interactions.

Experimental Study on the Input Coupled type CVT combined a Differential Gear and V-Belt type CVU

  • Kim, Yeon-Su;Park, Sang-Hoon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.1
    • /
    • pp.43-55
    • /
    • 2001
  • A continuously variable transmission(CVT) mechanism composed of one differential gear unit and one continuously variable unit(CVU) can be classified according to the coupling of CVU and the direction of power flows. The mechanism has many advantages which are the decrease of CVT size, the increase of overall efficiency, the extension of speed ratio range and generation of geared neutral. The CVT mechanism considered here is the input coupled type which combines the functions of a 2K-H I type differential gear unit and a V-belt type CVU. One shaft of the CVU is connected directly to the input shaft and another shaft of it is linked to the differential gear unit. It is shown that some fundamental relations(speed ratios, power flows and efficiencies) for twelve mechanisms previously described are valid by various experimental studies, six of them produce a power circulation and the others produce a power split. Some useful comparisons between theoretical analysis and experimental results are presented. General properties also are discussed, which connect following power flow modes : (a) power circulation mode; (b) power split mode.

  • PDF

Characteristics of ZnO thin film for surface acoustic filters (표면탄성파 필터를 위한 ZnO 박막의 특성)

  • Kim, Young-Jin;Park, Wuk-Dong;Kim, Ki-Wan
    • Journal of Sensor Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.45-50
    • /
    • 1995
  • The excellent c-axis oriented zinc oxide thin films were prepared by the RF magnetron sputtering method on glass substrates. Optimum fabrication conditions of the ZnO films were such that RF power, substrate temperature, and gas pressure of mixture Ar(50%):$O_{2}$(50%) were 150 W, $200^{\circ}C$, and 5 mTorr, respectively. In these conditions, the deposition rate was $310\;{\AA}/min$, and the resistivity of the film was $1{\times}10^6\;{\Omega}{\cdot}cm$. The ZnO film also showed high c-axis orientation and crystalinity according to XRD pattern and SEM photograph. A fabricated interdigital transducer generated 1st mode surface acoustic wave at 46.6 MHz and 2nd mode surface acoustic wave at 52.5 MHz. At the 1st mode, the phase velocity of surface acoustic wave and the electromechanical coupling coefficient were 2795 m/sec and 0.031 %, respectivly. At the 2nd mode, they were 3149 m/sec and 0.019 %. respectivly.

  • PDF

Design of Dual-Band Bandpass Filter Using Dual-Mode Resonators (이중 모드 공진기를 이용한 이중 대역 대역 통과 필터 설계)

  • Lee, Ja-Hyeon;Lim, Yeong-Seog
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.2
    • /
    • pp.252-257
    • /
    • 2011
  • A compact microstrip dual-band bandpass filter with controllable bandwidth for each passband is proposed. Each passband is independently designed using two different dual-mode resonators. The proposed dual-band bandpass filter has three transmission zeros. Two transmission zeros are generated by each dual-mode resonator. An additional transmission zero is generated by input/output port coupling. The dual-band bandpass filter application is designed for 2.4/5.7 GHz WLAN. Experimental results are presented to validate theory.

HMSIW Balanced Filter for Improved Isolation between Output Ports (출력 단자 간의 격리 특성이 향상된 HMSIW 평형 여파기)

  • Hwang, Seok-Min;Byun, Jin-Do;Lee, Hai-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.2
    • /
    • pp.173-181
    • /
    • 2011
  • In this paper, we propose a half mode substrate integrated waveguide(HMSIW) balanced bandpass filter to yield improved isolation between output ports. In order to achieve good isolation, resistive coupling slot is employed in HMSIW filter. The measurement results show that the insertion losses($S_{21}$, $S_{31}$) are $5.4{\pm}0.2$ dB and input return loss($S_{11}$) is more than 10 dB from 5.8 GHz to 6.4 GHz. Moreover isolation between output ports is larger than 18 dB and phase difference of output ports is $180{\pm}10^{\circ}$.

Islanding Detection for a Micro-Grid based on the Instantaneous Active and Reactive Powers in the Time Domain (시간영역에서 순시 유효/무효전력을 이용한 마이크로그리드의 단독운전 판단)

  • Lee, Young-Gui;Kim, Yeon-Hee;Zheng, Tai-Ying;Kim, Tae-Hyun;Kang, Yong-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.1
    • /
    • pp.22-27
    • /
    • 2012
  • Correct and fast detection of a micro-grid (MG) islanding is essential to the MG since operation, control and protection of the MG depend on an operating mode i.e., an interconnected mode or an islanding mode. When islanding occurs, the frequency of the point of common coupling (PCC) is not the nominal frequency during the transient state owing to the frequency rise or drop of generators in the MG. Thus, the active and reactive power calculated by the frequency domain based method such as Fourier Transform might contain some errors. This paper proposes an islanding detection algorithm for the MG based on the instantaneous active and reactive powers delivered to the dedicated line in the time domain. During the islanding mode, the instantaneous active and reactive powers delivered to the dedicated line are constants, which depend on the voltage of the PCC and the impedance of the dedicated line. In this paper, the instantaneous active and reactive powers are calculated in the time domain and used to detect islanding. The performance of the proposed algorithm is verified under various scenarios including islanding conditions, fault conditions and load variation using the PSCAD/EMTDC simulator. The results indicate that the algorithm successfully detects islanding for the MG.

Runoff Prediction from Machine Learning Models Coupled with Empirical Mode Decomposition: A case Study of the Grand River Basin in Canada

  • Parisouj, Peiman;Jun, Changhyun;Nezhad, Somayeh Moghimi;Narimani, Roya
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.136-136
    • /
    • 2022
  • This study investigates the possibility of coupling empirical mode decomposition (EMD) for runoff prediction from machine learning (ML) models. Here, support vector regression (SVR) and convolutional neural network (CNN) were considered for ML algorithms. Precipitation (P), minimum temperature (Tmin), maximum temperature (Tmax) and their intrinsic mode functions (IMF) values were used for input variables at a monthly scale from Jan. 1973 to Dec. 2020 in the Grand river basin, Canada. The support vector machine-recursive feature elimination (SVM-RFE) technique was applied for finding the best combination of predictors among input variables. The results show that the proposed method outperformed the individual performance of SVR and CNN during the training and testing periods in the study area. According to the correlation coefficient (R), the EMD-SVR model outperformed the EMD-CNN model in both training and testing even though the CNN indicated a better performance than the SVR before using IMF values. The EMD-SVR model showed higher improvement in R value (38.7%) than that from the EMD-CNN model (7.1%). It should be noted that the coupled models of EMD-SVR and EMD-CNN represented much higher accuracy in runoff prediction with respect to the considered evaluation indicators, including root mean square error (RMSE) and R values.

  • PDF

Optimal variables of TMDs for multi-mode buffeting control of long-span bridges

  • Chen, S.R.;Cai, C.S.;Gu, M.;Chang, C.C.
    • Wind and Structures
    • /
    • v.6 no.5
    • /
    • pp.387-402
    • /
    • 2003
  • In the past decades, much effort has been made towards the study of single-mode-based vibration controls with dynamic energy absorbers such as single or multiple Tuned Mass Dampers(TMDs). With the increase of bridge span length and the tendency of the bridge cross-section being more slender and streamlined, multi-mode coupled vibrations as well as their controls have become very important for large bridges susceptible to strong winds. As a simple but effective device, the TMD system especially the semi-active one has become a promising option for such coupled vibration controls. However, despite various studies of optimal controls of single-mode-based vibrations with TMDs, research on the corresponding controls of the multi-mode coupled vibrations is very rare so far. For the development of a semi-active control strategy to suppress the multi-mode coupled vibrations, a comprehensive parametric analysis on the optimal variables of this control is substantial. In the present study, a multi-mode control strategy named "three-row" TMD system is discussed and the general numerical equations are developed at first. Then a parametric study on the optimal control variables for the "three-row" TMD system is conducted for a prototype Humen Suspension Bridge, through which some useful information and a better understanding of the optimal control variables to suppress the coupled vibrations are obtained. This information lays a foundation for the design of semi-active control.