• 제목/요약/키워드: modal strain

검색결과 198건 처리시간 0.029초

상시진동 계측자료를 이용한 Nanjing TV탑의 강성계수 추정 (Identification of Stiffness Parameters of Nanjing TV Tower Using Ambient Vibration Records)

  • Kim Jae Min;Feng. M. Q.
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 봄 학술발표회 논문집
    • /
    • pp.291-300
    • /
    • 1998
  • This paper demonstrates how ambient vibration measurements at a limited number of locations can be effectively utilized to estimate parameters of a finite element model of a large-scale structural system involving a large number of elements. System identification using ambient vibration measurements presents a challenge requiring the use of special identification techniques, which ran deal with very small magnitudes of ambient vibration contaminated by noise without the knowledge of input farces. In the present study, the modal parameters such as natural frequencies, damping ratios, and mode shapes of the structural system were estimated by means of appropriate system identification techniques including the random decrement method. Moreover, estimation of parameters such as the stiffness matrix of the finite element model from the system response measured by a limited number of sensors is another challenge. In this study, the system stiffness matrix was estimated by using the quadratic optimization involving the computed and measured modal strain energy of the system, with the aid of a sensitivity relationship between each element stiffness and the modal parameters established by the second order inverse modal perturbation theory. The finite element models thus identified represent the actual structural system very well, as their calculated dynamic characteristics satisfactorily matched the observed ones from the ambient vibration test performed on a large-scale structural system subjected primarily to ambient wind excitations. The dynamic models identified by this study will be used for design of an active mass damper system to be installed on this structure fer suppressing its wind vibration.

  • PDF

광섬유 변형률 센서를 이용한 구조물의 동적 변형 추정 (Dynamic Deformation Estimation of Structures Using Fiber Optic Strain Sensors)

  • 강래형;김대관;;;한재흥
    • 한국소음진동공학회논문집
    • /
    • 제16권12호
    • /
    • pp.1279-1285
    • /
    • 2006
  • In this study, structural deformation estimation using displacement-strain relationship is investigated. When displacements of a structure cannot be measured directly, estimation of displacements using strain data can be an alternative solution. Additionally, the deformation of the whole structure as well as the displacement at the point of interest can be estimated. Strain signals are obtained front Fiber Bragg Grating(FBG) sensors that have an excellent multiplexing ability. Some experiments were performed on two beams and a plate to which FBG sensors were attached in the laboratory. Strain signals from FBG sensors along a single strand of optical fiber were obtained through wavelength division multiplexing(WDM) method. The beams and the plate structures were subjected to various loading conditions, and deformed shapes were reconstructed from the displacement-strain transformation relationship. The results show good agreements with those measured directly from laser sensors. Moreover, the whole structural shapes of the beams and the plate were estimated using only some strain sensors.

Field Measurement and Modal Identification of Various Structures for Structural Health Monitoring

  • Yoshida, Akihiko;Tamura, Yukio
    • 국제초고층학회논문집
    • /
    • 제4권1호
    • /
    • pp.9-25
    • /
    • 2015
  • Field measurements of various structures have been conducted for many purposes. Measurement data obtained by field measurement is very useful to determine vibration characteristics including dynamic characteristics such as the damping ratio, natural frequency, and mode shape of a structure. In addition, results of field measurements and modal identification can be used for modal updating of FEM analysis, for checking the efficiency of damping devices and so on. This paper shows some examples of field measurements and modal identification for structural health monitoring. As the first example, changes of dynamic characteristics of a 15-story office building in four construction stages from the foundation stage to completion are described. The dynamic characteristics of each construction stage were modeled as accurately as possible by FEM, and the stiffness of the main structural frame was evaluated and the FEM results were compared with measurements performed on non-load-bearing elements. Simple FEM modal updating was also applied. As the next example, full-scale measurements were also carried out on a high-rise chimney, and the efficiency of the tuned mass damper was investigated by using two kinds of modal identification techniques. Good correspondence was shown with vibration characteristics obtained by the 2DOF-RD technique and the Frequency Domain Decomposition method. As the last example, the wind-induced response using RTK-GPS and the feasibility of hybrid use of FEM analysis and RTK-GPS for confirming the integrity of structures during strong typhoons were shown. The member stresses obtained by hybrid use of FEM analysis and RTK-GPS were close to the member stresses measured by strain gauges.

Experimental study of vibration characteristics of FRP cables based on Long-Gauge strain

  • Xia, Qi;Wu, JiaJia;Zhu, XueWu;Zhang, Jian
    • Structural Engineering and Mechanics
    • /
    • 제63권6호
    • /
    • pp.735-742
    • /
    • 2017
  • Steel cables as the most important components are widely used in the certain types of structures such as cable-supported bridges, but the long-span structures may result in an increase in fatigue under high stress and corrosion of steel cables. The traditional steel cable is becoming a more evident hindrance. Fiber Reinforced Polymer (FRP) cables with lightweight, high-strength are widely used in civil engineering, but there is little research in vibrational characteristics of FRP cables, especially on the damping characteristic. This article studied the two methods to evaluate dynamical damping characteristic of basalt FRP(BFRP) and glass FRP(GFRP) cables. First, the vibration tests of the B/G FRP cables with different diameter and different cable force were executed. Second, the cables forces were calculated using dynamic strain, static strain and dynamic acceleration respectively, which were further compared with the measured force. Third, experimental modal damping of each cables was calculated by the half power point method, and was compared with the calculation by Rayleigh damping theory and energy dissipation damping theory. The results indicate that (1) The experimental damping of FRP cables decreases with the increase of cable force, and the trend of experimental damping changes is roughly similar with the theoretical damping. (2) The distribution of modal damping calculated by Rayleigh damping theory is closer to the experimental results, and the damping performance of GFRP cables is better than BFRP cables.

정적 변형률을 이용한 플로팅 구조물의 손상탐지 (Damage Detection in Floating Structure Using Static Strain Data)

  • 박수용;전용환
    • 한국항해항만학회지
    • /
    • 제36권3호
    • /
    • pp.163-168
    • /
    • 2012
  • 최근 물 가까이에서 생활하고 여가를 보낼 수 있는 친수공간에 대한 욕구가 증가하면서 플로팅 구조물에 대한 관심이 커져가고 있다. 이에 본 연구에서는 정적 변형률을 이용한 플로팅 구조물의 손상탐지기법을 제안하였다. 손상을 탐지하기 위한 손상지수는 기존의 모달 변형에너지를 이용한 손상지수 법을 변형률을 적용할 수 있도록 확장하여 손상 전과 손상 후의 변형률로 나타내었으며, 손상지수 계산 후 손상부위를 결정하는 손상탐지는 패턴인식을 이용하였다. 제안된 이론의 정확성과 타당성은 플로팅 구조물의 축소모형을 제작하고 계측된 변형률 데이터에 적용하여 검증하였다.

A dominant vibration mode-based scalar ground motion intensity measure for single-layer reticulated domes

  • Zhong, Jie;Zhi, Xudong;Fan, Feng
    • Earthquakes and Structures
    • /
    • 제11권2호
    • /
    • pp.245-264
    • /
    • 2016
  • A suitable ground motion intensity measure (IM) plays a crucial role in the seismic performance assessment of a structure. In this paper, we introduce a scalar IM for use in evaluating the seismic response of single-layer reticulated domes. This IM is defined as the weighted geometric mean of the spectral acceleration ordinates at the periods of the dominant vibration modes of the structure considered, and the modal strain energy ratio of each dominant vibration mode is the corresponding weight. Its applicability and superiority to 11 other existing IMs are firstly investigated in terms of correlation with the nonlinear seismic response, efficiency and sufficiency using the results of incremental dynamic analyses which are performed for a typical single-layer reticulated dome. The hazard computability of this newly proposed IM is also briefly discussed and illustrated. A conclusion is drawn that this dominant vibration mode-based scalar IM has the characteristics of strong correlation, high efficiency, good sufficiency as well as hazard computability, and thereby is appropriate for use in the prediction of seismic response of single-layer reticulated domes.

그루브를 이용한 표면형상변형 동특성 변경법 : 체크무늬 그루브의 효용성과 초기 시작점의 선택 알고리즘에 대한 비교 (Structural Dynamics Modification Using Surface Grooving Technique : The Effectiveness of Check board Pattern and Comparison the Algorithm for Initial Starting Point)

  • 박미유;박영진;박윤식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.128-131
    • /
    • 2005
  • Structural Dynamics Modification (SDM) is a very effective technique to improve structure's dynamic characteristics by adding or removing auxiliary structures. changing material properties and shape of structure. Among those of SDM technique, the method to change shape of structure has been mostly relied on engineer's experience and trial-and-error process which are very time consuming. In order to develop a systematic method to change structure shape, surface grooving technique is studied and successfully applied to HDD cover model. To check the effectiveness of this surface grooving technique, the grooved HDD cover design was manufactured using rapid prototyping and experimentally tested to prove the effectiveness of the grooving method as one of SDM techniques. And the modal strain energy and eigenvalue sensitivity method for choosing the initial starting point are compared.

  • PDF

A wavelet finite element-based adaptive-scale damage detection strategy

  • He, Wen-Yu;Zhu, Songye;Ren, Wei-Xin
    • Smart Structures and Systems
    • /
    • 제14권3호
    • /
    • pp.285-305
    • /
    • 2014
  • This study employs a novel beam-type wavelet finite element model (WFEM) to fulfill an adaptive-scale damage detection strategy in which structural modeling scales are not only spatially varying but also dynamically changed according to actual needs. Dynamical equations of beam structures are derived in the context of WFEM by using the second-generation cubic Hermite multiwavelets as interpolation functions. Based on the concept of modal strain energy, damage in beam structures can be detected in a progressive manner: the suspected region is first identified using a low-scale structural model and the more accurate location and severity of the damage can be estimated using a multi-scale model with local refinement in the suspected region. Although this strategy can be implemented using traditional finite element methods, the multi-scale and localization properties of the WFEM considerably facilitate the adaptive change of modeling scales in a multi-stage process. The numerical examples in this study clearly demonstrate that the proposed damage detection strategy can progressively and efficiently locate and quantify damage with minimal computation effort and a limited number of sensors.

최적화 화음탐색법을 이용한 항만 케이슨 구조물의 구조건전성 평가 (Structural Health Monitoring of Harbor Caisson-type Structures using Harmony Search Method)

  • 이소영;김정태;이진학;강윤구
    • 한국해양공학회지
    • /
    • 제23권1호
    • /
    • pp.122-128
    • /
    • 2009
  • In this study, damage detection method using harmony search method and frequency response is proposed. In order to verify this method, the following approaches are implemented. Firstly, damage detection method using harmony search was developed. To detect damage, objective functions that minimize difference with natural frequency and modal strain energy from undamaged and damaged model are used. Secondly, efficiency of developed damage detection method was verified by damage detection of beam structure. And results of harmony search and micro genetic algorithm are compared and evaluated. Thirdly, numerical model was implemented for harbor caisson structure and damage scenario was determined. Lastly, damage detection was performed by proposed method and utility of proposed method is verified.

Simplified planar model for damage estimation of interlocked caisson system

  • Huynh, Thanh-Canh;Lee, So-Young;Kim, Jeong-Tae;Park, Woo-Sun;Han, Sang-Hun
    • Smart Structures and Systems
    • /
    • 제12권3_4호
    • /
    • pp.441-463
    • /
    • 2013
  • In this paper, a simplified planar model is developed for damage estimation of interlocked caisson systems. Firstly, a conceptual dynamic model of the interlocked caisson system is designed on the basis of the characteristics of existing harbor caisson structures. A mass-spring-dashpot model allowing only the sway motion is formulated. To represent the condition of interlocking mechanisms, each caisson unit is connected to adjacent ones via springs and dashpots. Secondly, the accuracy of the planar model's vibration analysis is numerically evaluated on a 3-D FE model of the interlocked caisson system. Finally, the simplified planar model is employed for damage estimation in the interlocked caisson system. For localizing damaged caissons, a damage detection method based on modal strain energy is formulated for the caisson system.