• Title/Summary/Keyword: modal energy

Search Result 399, Processing Time 0.022 seconds

A dominant vibration mode-based scalar ground motion intensity measure for single-layer reticulated domes

  • Zhong, Jie;Zhi, Xudong;Fan, Feng
    • Earthquakes and Structures
    • /
    • v.11 no.2
    • /
    • pp.245-264
    • /
    • 2016
  • A suitable ground motion intensity measure (IM) plays a crucial role in the seismic performance assessment of a structure. In this paper, we introduce a scalar IM for use in evaluating the seismic response of single-layer reticulated domes. This IM is defined as the weighted geometric mean of the spectral acceleration ordinates at the periods of the dominant vibration modes of the structure considered, and the modal strain energy ratio of each dominant vibration mode is the corresponding weight. Its applicability and superiority to 11 other existing IMs are firstly investigated in terms of correlation with the nonlinear seismic response, efficiency and sufficiency using the results of incremental dynamic analyses which are performed for a typical single-layer reticulated dome. The hazard computability of this newly proposed IM is also briefly discussed and illustrated. A conclusion is drawn that this dominant vibration mode-based scalar IM has the characteristics of strong correlation, high efficiency, good sufficiency as well as hazard computability, and thereby is appropriate for use in the prediction of seismic response of single-layer reticulated domes.

Structure-Control Combined Design with Structure Intensity

  • PARK JUNG-HYEN;KIM SOON HO
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.5 s.54
    • /
    • pp.57-65
    • /
    • 2003
  • This paper proposes an optimum design method of structural and control systems, using a 2-D truss structure as an example. The structure is subjected to initial static loads and disturbances. For the structure, a FEM model is formed. Using modal transformation, the equation of motion is transformed into modal coordinates, in order to decrease D.O.F. of the FEM model. To suppress the effect of the disturbances, the structure is controlled by an output feedback $H_{\infty}$ controller. The design variables of the combined optimal design of the control-structure systems are the cross sectional areas of truss members. The structural objective function is the structural weight. The control objective function is the $H_{\infty}$ norm, the performance index of control. The second structural objective function is the energy of the response related to the initial state, which is derived from the time integration of the quadratic form of the state in the closed-loop system. In a numerical example, simulations have been perform. Through the consideration of structural weight and $H_{\infty}$ norm, an advantage of the combined optimum design of structural and control systems is shown. Moreover, since the performance index of control is almost nearly optimiz, we can acquire better design of structural strength.

Structural Dynamics Modification Using Surface Grooving Technique : The Effectiveness of Check board Pattern and Comparison the Algorithm for Initial Starting Point (그루브를 이용한 표면형상변형 동특성 변경법 : 체크무늬 그루브의 효용성과 초기 시작점의 선택 알고리즘에 대한 비교)

  • Park, Mi-You;Park, Young-Jin;Park, Youn-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.128-131
    • /
    • 2005
  • Structural Dynamics Modification (SDM) is a very effective technique to improve structure's dynamic characteristics by adding or removing auxiliary structures. changing material properties and shape of structure. Among those of SDM technique, the method to change shape of structure has been mostly relied on engineer's experience and trial-and-error process which are very time consuming. In order to develop a systematic method to change structure shape, surface grooving technique is studied and successfully applied to HDD cover model. To check the effectiveness of this surface grooving technique, the grooved HDD cover design was manufactured using rapid prototyping and experimentally tested to prove the effectiveness of the grooving method as one of SDM techniques. And the modal strain energy and eigenvalue sensitivity method for choosing the initial starting point are compared.

  • PDF

A wavelet finite element-based adaptive-scale damage detection strategy

  • He, Wen-Yu;Zhu, Songye;Ren, Wei-Xin
    • Smart Structures and Systems
    • /
    • v.14 no.3
    • /
    • pp.285-305
    • /
    • 2014
  • This study employs a novel beam-type wavelet finite element model (WFEM) to fulfill an adaptive-scale damage detection strategy in which structural modeling scales are not only spatially varying but also dynamically changed according to actual needs. Dynamical equations of beam structures are derived in the context of WFEM by using the second-generation cubic Hermite multiwavelets as interpolation functions. Based on the concept of modal strain energy, damage in beam structures can be detected in a progressive manner: the suspected region is first identified using a low-scale structural model and the more accurate location and severity of the damage can be estimated using a multi-scale model with local refinement in the suspected region. Although this strategy can be implemented using traditional finite element methods, the multi-scale and localization properties of the WFEM considerably facilitate the adaptive change of modeling scales in a multi-stage process. The numerical examples in this study clearly demonstrate that the proposed damage detection strategy can progressively and efficiently locate and quantify damage with minimal computation effort and a limited number of sensors.

Structure-Control Combined Design with Structure Intensity

  • Park, Jung-Hyen;Kim, Soon-Ho
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.6 no.1
    • /
    • pp.60-68
    • /
    • 2003
  • This paper proposes an optimum design method of structural and control systems, using a 2-D truss structure as an example. The structure is subjected to initial static loads and disturbances. For the structure, a FEM model is formed. Using modal transformation, the equation of motion is transformed into modal coordinates, in order to decrease D.O.F. of the FEM model. To suppress the effect of the disturbances, the structure is controlled by an output feedback $H_{\infty}$ controller. The design variables of the combined optimal design of the control-structure systems are the cross sectional areas of truss members. The structural objective function is the structural weight. The control objective function is the $H_{\infty}$ norm, the performance index of control. The second structural objective function is the energy of the response related to the initial state, which is derived from the time integration of the quadratic form of the state in the closed-loop system. In a numerical example, simulations have been perform. Through the consideration of structural weight and $H_{\infty}$ norm, an advantage of the combined optimum design of structural and control systems is shown. Moreover, since the performance index of control is almost nearly optimiz, we can acquire better design of structural strength.

  • PDF

Seismic Behavior of Steel Structure with Added Viscoelastic Dampers under Strong Earthquake Ground Motions (점탄성 감쇠기를 설치한 강구조 건물의 강지진 하중에 의한 거동 연구)

  • Oh, Soon Taek
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.111-120
    • /
    • 1993
  • This paper summarizes an experimental and analytical study on the application of viscoelastic dampers as energy dissipation devices in structural applications. It can be concluded the viscoelastic dampers are effective in reducing excessive vibrations of structures under strong earthquake ground motions. It is also found that the modal strain energy method can be used to reliably predict the equivalent structural damping, and the seismic response of a viscoelastically damped structure can be accurately estimated by conventional modal analysis techniques. Based on the above studies, a design procedure for viscoelastically damped structures is presented. This design procedure fits naturally into the conventional structural design flow chart by including damping ratio as an additional design parameter.

  • PDF

HYDROELASTIC VIBRATION ANALYSIS OF TWO FLEXIBLE RECTANGULAR PLATES PARTIALLY COUPLED WITH A LIQUID

  • Jeong, Kyeong-Hoon;Kim, Jong-Wook
    • Nuclear Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.335-346
    • /
    • 2009
  • This paper deals with a hydroelastic vibration analysis of two rectangular plates partially coupled with a liquid, which is bounded by two plates and two rigid side walls. The wet displacement of each plate is assumed to be a combination of the modal functions of a dry uniform beam with a clamped boundary condition. As the liquid is assumed to be an ideal liquid, the displacement potential satisfying the Laplace equation is determined so that the liquid boundary conditions can meet the requirements at the rigid surfaces and the free liquid surface. The wet dynamic modal functions of each plate are expanded by using the finite Fourier transform to obtain an appropriate form of the compatibility requirement along the contacting surfaces between the plates and the liquid. The liquid-coupled natural frequencies of the plates are derived by using the Rayleigh-Ritz method. Finite element analyses using commercial software are carried out to verify the proposed theory. It is observed that the theoretical method agrees excellently with the three-dimensional finite element analyses results. The effects of the liquid depth and the liquid thickness on the normalized natural frequencies are investigated to identify the dynamic characteristics of the liquid coupled system.

Structural Health Monitoring of Harbor Caisson-type Structures using Harmony Search Method (최적화 화음탐색법을 이용한 항만 케이슨 구조물의 구조건전성 평가)

  • Lee, So-Young;Kim, Jeong-Tae;Yi, Jin-Hak;Kang, Yoon-Koo
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.122-128
    • /
    • 2009
  • In this study, damage detection method using harmony search method and frequency response is proposed. In order to verify this method, the following approaches are implemented. Firstly, damage detection method using harmony search was developed. To detect damage, objective functions that minimize difference with natural frequency and modal strain energy from undamaged and damaged model are used. Secondly, efficiency of developed damage detection method was verified by damage detection of beam structure. And results of harmony search and micro genetic algorithm are compared and evaluated. Thirdly, numerical model was implemented for harbor caisson structure and damage scenario was determined. Lastly, damage detection was performed by proposed method and utility of proposed method is verified.

A Study on Natural Freauencies of Cylindrical Structures Using Modal Lattice Domain (모드 평면을 이용한 원통형 구조물의 고유진동수 해석에 관한 연구)

  • 김정태;김동혁;이용봉
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.3
    • /
    • pp.789-798
    • /
    • 1991
  • 본 연구에서는 원통형 구조물의 진동해석을 위하여 통계에너지 분석방식(st- atistical energy analysis:SEA)이 사용되었다. SEA는 4개의 물리적 변수인 구조물 질량(Mi), 주파수대역에 존재하는 고유진동수(Ni), 내부손실계수(internal loss fact- or) 및 상호손실계수(coupling loss factor)를 이용하여 구조물의 진동수준과 구조물 상호간의 에너지 교환을 해석하는 방법으로서 비록 넓은 주파수 범위에 걸쳐 정확한 진동예측을 하기에는 어느정도 오차가 예상되는 단점이 있으나 진동해석이 용이하고 복잡한 계산을 필요로 하지 않기 때문에 대형구조물의 진동해석에 많이 사용되고 있 는 기법이다. 따라서 연구의 대상인 원통형 구조물의 고유진동수를 예측하기 위하여 일차적으로 반경에 의한 곡률영향을 배제시킨 평판에 대한 분석이 시도되었다. 이와 함께 주어진 주파수 대역에 걸쳐 평판및 원통형 구조물의 고유진동수의 차이를 비교하 였다.그결과로부터 원통형 구조물에 대한 고유진동수 계산식을 평판구조물의 굽힘 강성과 곡률반경으로 야기되는 표면응력에 의한 함수로 표현하였다.

Empirical decomposition method for modeless component and its application to VIV analysis

  • Chen, Zheng-Shou;Park, Yeon-Seok;Wang, Li-ping;Kim, Wu-Joan;Sun, Meng;Li, Qiang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.2
    • /
    • pp.301-314
    • /
    • 2015
  • Aiming at accurately distinguishing modeless component and natural vibration mode terms from data series of nonlinear and non-stationary processes, such as Vortex-Induced Vibration (VIV), a new empirical mode decomposition method has been developed in this paper. The key innovation related to this technique concerns the method to decompose modeless component from non-stationary process, characterized by a predetermined 'maximum intrinsic time window' and cubic spline. The introduction of conceptual modeless component eliminates the requirement of using spurious harmonics to represent nonlinear and non-stationary signals and then makes subsequent modal identification more accurate and meaningful. It neither slacks the vibration power of natural modes nor aggrandizes spurious energy of modeless component. The scale of the maximum intrinsic time window has been well designed, avoiding energy aliasing in data processing. Finally, it has been applied to analyze data series of vortex-induced vibration processes. Taking advantage of this newly introduced empirical decomposition method and mode identification technique, the vibration analysis about vortex-induced vibration becomes more meaningful.