• Title/Summary/Keyword: mobile vehicle

Search Result 657, Processing Time 0.032 seconds

A Study on the Implementation of Mobile Robot Remote Control System Based on JADS Standard (JAUS표준 기반의 모바일 로봇 원격제어 시스템 구현에 관한 연구)

  • Jung, Sung-Uk;Cho, Sang-Hyun;Kim, Tae-Hyu;Park, Young-Seak
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.3
    • /
    • pp.230-237
    • /
    • 2008
  • Recently, lots of interest and competition in developments related to the autonomous-vehicle robot are being further increased. However, the absence of the standard architectures for effectively controlling the autonomous-vehicle robot led to many difficulties such as the long duration of development and the uncompatibility with other autonomous-vehicle robots. Accordingly, we implemented a mobile autonomous-vehicle robot system based on JAUS standard architecture. The mobile robot communicates with the remote-control system by using wireless LAN UDP/IP JAUS command massages. Its effectiveness is showed through the experimental results related to the navigation of implemented robot.

  • PDF

Implementation of mmWave long-range backhaul for UAV-BS

  • Jangwon Moon;Junwoo Kim;Hoon Lee;Youngjin Moon;Yongsu Lee;Youngjo Bang;Kyungyeol Sohn;Jungsook Bae;Kwangseon Kim;Seungjae Bahng;Heesoo Lee
    • ETRI Journal
    • /
    • v.45 no.5
    • /
    • pp.781-794
    • /
    • 2023
  • Uncrewed aerial vehicles (UAVs) have become a vital element in nonterrestrial networks, especially with respect to 5G communication systems and beyond. The use of UAVs in support of 4G/5G base station (uncrewed aerial vehicle base station [UAV-BS]) has proven to be a practical solution for extending cellular network services to areas where conventional infrastructures are unavailable. In this study, we introduce a UAV-BS system that utilizes a high-capacity wireless backhaul operating in millimeter-wave frequency bands. This system can achieve a maximum throughput of 1.3 Gbps while delivering data at a rate of 300 Mbps, even at distances of 10 km. We also present the details of our testbed implementation alongside the performance results obtained from field tests.

Hybrid control of a tricycle wheeled AGV for path following using advanced fuzzy-PID

  • Bui, Thanh-Luan;Doan, Phuc-Thinh;Van, Duong-Tu;Kim, Hak-Kyeong;Kim, Sang-Bong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1287-1296
    • /
    • 2014
  • This paper is about control of Automated Guided Vehicle for path following using fuzzy logic controller. The Automated Guided Vehicle is a tricycle wheeled mobile robot with three wheels, two fixed passive wheels and one steering driving wheel. First, kinematic and dynamic modeling for Automated Guided Vehicle is presented. Second, a controller that integrates two control loops, kinematic control loop and dynamic control loop, is designed for Automated Guided Vehicle to follow an unknown path. The kinematic control loop based on Fuzzy logic framework and the dynamic control loop based on two PID controllers are proposed. Simulation and experimental results are presented to show the effectiveness of the proposed controllers.

Neural fuzzy control for a mobile vehicle

  • Sugisaka, Masanori;Wang, Xin;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.338-341
    • /
    • 1996
  • A neural fuzzy control strategy, developed in order to make a Mobile Vehicle(MV) run along with the traffic guidelines on the road, is presented. A neurocomputer is used in the control procedure and it learnt the driving knowledge to control the MV's actions. The image information of the guidelines is provided by a CCD camera on the top of the MV. The MV utilize the image information to identify the shape of the road and to decide the position of itself, and control the running actions. A fuzzy controller works on-line. Both of the neural controller and the fuzzy controller make up each other. This control method solve the problem of mechanical and electrical inertia and make the Mobile Vehicle run rapidly and smoothly.

  • PDF

Design of an Image Processing Board Using DSP(TMS320C6211) and Its Applications (DSP(TMS320C6211)를 이용한 영상 처리 보드의 설계 및 응용)

  • 박무열;최중경;구본민;류한성;권정혁;하홍수;김진애
    • Proceedings of the IEEK Conference
    • /
    • 2002.06e
    • /
    • pp.227-230
    • /
    • 2002
  • In this paper, we designed and made an image processing board that converts analog NTSC CVBS from CCD camera into digital image, stores it in a memory and accomplishes an appropriate digital image processing suitable to our application. And then loaded it on the self-controlled mobile vehicle and verified its performance by controlling the self-controlled mobile vehicle to avoid obstacles and arrive at the destination through various digital image processes. From the result, the self-controled mobile vehicle system avoided obstacles and got the destination correctly. We knew that designed image processing board is enough to realize the real-time control system.

  • PDF

Intelligent Control for the Tracing Mobile Vehicle Using Fuzzy Logic (퍼지 논리를 이용한 추종 Mobile Vehicle의 지능적 Control 구현)

  • 최우경;서재용;김성현;전홍태
    • Proceedings of the IEEK Conference
    • /
    • 2002.06c
    • /
    • pp.119-122
    • /
    • 2002
  • The paper proposed the intelligent inference method which keeps MV(Mobile vehicle) a little way off from men and makes it follow them using fuzzy controller Recognizing positions of MV and Men and distance between them was used to infer movement angle and speed of the MV with multi-ultrasonic sensor and USB camera The very important thing Is that the MV needs to obtain surrounding Information from the sensor and the camera, then It needs to represent those circumstances MV was controlled by inference from the speed and angle which are obtained from sensor and camera. Traveling simulation with a real MV was performed repeatedly to verify the usefulness of the fuzzy logic algorithm which was proposed in this paper. And a successful result of the experiment demonstrated the excellence of the fuzzy logic controller.

  • PDF

Variable Configuration Tracked Mobile Robot for Demining Operations (지뢰제거작업을 위한 가변 형상 무한궤도형 주행 로봇)

  • Jeong, Hae-Kwan;Kim, Sang-Do;Lee, Cheong-Hee;Kwak, Yoon-Keun
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.804-809
    • /
    • 2004
  • This paper introduces a link-type tracked vehicle which is developed for demining operations. The vehicle consists of three parts - front frame, rear frame and body. The front frame is connected to the rear frame by a rotational passive adaptation mechanism which is a driving mechanism of the vehicle. Additionally, the demining system which is adaptable to mobile robot is developed to clear small Anti-Personnel(AP) mines with inexplosive method. In other words, assembled rakes unearth mines by their opposite rotation to the direction of the robot. Finally, the motions of demining rakes and design parameters of the demining system are analyzed.

  • PDF

Implementation of Mobile Digital Signage System on the Moving Vehicle (차량 탑재형 모바일 디지털 사이니지 구현)

  • Kim, Hee Dong;Kim, Cha Sung
    • Journal of Information Technology Services
    • /
    • v.14 no.4
    • /
    • pp.257-267
    • /
    • 2015
  • We propose a vehicle-mounted, location-aware mobile digital signage system that can be used for public transportation through mobile communication. This paper proposes the installations of the LED display panels at the backside of the bus., which display traffic information to cars behind the bus. Information to be displayed would include, but is not limited to, road information, public commercials and private commercials. We propose the system architecture and further implement the prototype of mobile digital signage system for demonstration. The system is based on the Client-Server system. Each bus has a client terminal which detects the current location by a GPS receiver and sends its location information to the server using mobile communication function. The terminal device receives advertisements and traffic information from the server and displays it to the large LCD or LED panel installed at the inside and outside of the bus. We use the Android smartphone as a client system, which inherently equipped with GPS and mobile communication function. GPS detects the location of bus and reports its geo-location data to the traffic information center server via a wireless communication network. On the server side, we developed a specially designed control server, where it communicates with the other traffic information center and updates and manages the databases contents being displayed by each position. The server contains location dependent variable information and returns selected information back to the vehicle in real time. Spatial database is used to process location based data. Server system periodically receives the real time traffic information from the road information center database. And it process the information by bus location and bus line number. In this paper, we propose a mobile digital signage service and explain the system implementation of this service.

Design and Analysis of Multiple Mobile Router Architecture for In-Vehicle IPv6 Networks (차량 내 IPv6 네트워크를 위한 다중 이동 라우터 구조의 설계와 분석)

  • Paik Eun-Kyoung;Cho Ho-Sik;Choi Yang-Hee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.2 no.2 s.3
    • /
    • pp.43-54
    • /
    • 2003
  • As the demand for ubiquitous mobile wireless Internet grows, vehicles are receiving a lot of attention as new networking platforms. The demand for 4G all-IP networks encourages vehicle networks to be connected using IPv6. By means of network mobility (NEMO) support, we can connect sensors, controllers, local ,servers as well as passengers' devices of a vehicle to the Internet through a mobile router. The mobile router provides the connectivity to the Internet and mobility transparency for the rest of the mobile nodes of an in-vehicle nv6 network. So, it is .important for the mobile router to assure reliable connection and a sufficient data rate for the group of nodes behind it. To provide reliability, this paper proposes an adaptive multihoming architecture of multiple mobile routers. Proposed architecture makes use of different mobility characteristics of different vehicles. Simulation results with different configurations show that the proposed architecture increases session preservation thus increases reliability and reduces packet loss. We also show that the proposed architecture is adaptive to heterogeneous access environment which provide different access coverage areas and data rates. The result shows that our architecture achieves sufficient data rates as well as session preservation.

  • PDF