• 제목/요약/키워드: mobile robot control

검색결과 1,465건 처리시간 0.03초

Intelligent Robot Control using Personal Digital Assistants

  • Jaeyong Seo;Kim, Seongjoo;Kim, Yongtaek;Hongtae Jeon
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.304-306
    • /
    • 2003
  • In this paper, we propose the intelligent robot control technique for mobile robot using personal digital assistants (PDA). With the proposed technique, the mobile rebot can trace human at regular intervals by the remote control method with PDA. The mobile robot can recognize the distances between it and human whom the robot must follow with both multi-ultrasonic sensors and PC-camera and then, can inference the direction and velocity of itself to keep the given regular distances. In the first place, the mobile robot acquires the information about circumstances using ultrasonic sensor and PC-camera then secondly, transmits the data to PDA using wireless LAN communication. Finally, PDA recognizes the status of circumstances using the fuzzy logic and neural network and gives the command to mobile robot again.

  • PDF

제네틱 알고리즘을 이용한 이동로봇의 지능제어기 설계 (Design of an Intelligent Controller of Mobile Robot Using Genetic Algorithm)

  • 정동연;김종수;한성현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 추계학술대회
    • /
    • pp.207-212
    • /
    • 2003
  • This paper proposed trajectory tracking control of Mobile Robot. Trajectory tracking control scheme are Real coding Genetic-Algorithm and Back-propergation Algorithm. Control scheme ability experience proposed simulation.

  • PDF

유전자 알고리즘을 이용한 이동로봇의 지능제어 (Intelligent Controller of Mobile Robot Using Genetic Algorithm)

  • 정동연;김홍래;한성현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 추계학술대회 논문집
    • /
    • pp.181-186
    • /
    • 2004
  • This paper proposed trajectory tracking control of Mobile Robot. Trajectory tracking control scheme are Real coding Genetic-Algorithm and Back-propergation Algorithm. Control scheme ability experience proposed simulation.

  • PDF

Simulation of Mobile Robot Navigation based on Multi-Sensor Data Fusion by Probabilistic Model

  • Jin, Tae-seok
    • 한국산업융합학회 논문집
    • /
    • 제21권4호
    • /
    • pp.167-174
    • /
    • 2018
  • Presently, the exploration of an unknown environment is an important task for the development of mobile robots and mobile robots are navigated by means of a number of methods, using navigating systems such as the sonar-sensing system or the visual-sensing system. To fully utilize the strengths of both the sonar and visual sensing systems, In mobile robotics, multi-sensor data fusion(MSDF) became useful method for navigation and collision avoiding. Moreover, their applicability for map building and navigation has exploited in recent years. In this paper, as the preliminary step for developing a multi-purpose autonomous carrier mobile robot to transport trolleys or heavy goods and serve as robotic nursing assistant in hospital wards. The aim of this paper is to present the use of multi-sensor data fusion such as ultrasonic sensor, IR sensor for mobile robot to navigate, and presents an experimental mobile robot designed to operate autonomously within indoor environments. Simulation results with a mobile robot will demonstrate the effectiveness of the discussed methods.

Design of controller for mobile robot in welding process of shipbuilding engineering

  • Ku, Namkug;Ha, Sol;Roh, Myung-Il
    • Journal of Computational Design and Engineering
    • /
    • 제1권4호
    • /
    • pp.243-255
    • /
    • 2014
  • The present study describes the development of control hardware and software for a mobile welding robot. This robot is able to move and perform welding tasks in a double hull structure. The control hardware consists of a main controller and a welding machine controller. Control software consists of four layers. Each layer consists of modules. Suitable combinations of modules enable the control software to perform the required tasks. Control software is developed using C programming under QNX operating system. For the modularizing architecture of control software, we designed control software with four layers: Task Manager, Task Planner, Actions for Task, and Task Executer. The embedded controller and control software was applied to the mobile welding robot for successful execution of the required tasks. For evaluate this imbedded controller and control software, the field tests are conducted, it is confirmed that the developed imbedded controller of mobile welding robot for shipyard is well designed and implemented.

중하중을 받는 이동로붓의 슬라이딩모드 제어 (Sliding Mode Control for a High-Load Wheeled Mobile Robot)

  • 홍대희;정재훈
    • 한국정밀공학회지
    • /
    • 제17권5호
    • /
    • pp.145-153
    • /
    • 2000
  • This paper discusses the dynamic modeling and robust control development for a differentially steered mobile robot subject to wheel slip according to high load. Consideration of wheel slip is crucial for high load applications such as construction automation tasks because wheel slip acts as a severe disturbance to the system. It is shown that the uncertainty terms due to the wheel slip satisfy the matching condition for the sliding mode control design. From the full dynamic model of the mobile robot, a reduced ideal model is extracted to facilitate the control design. The sliding mode control method ensures the dynamic tracking performance for such a mobile robot. Numerical simulation shows the promise of the developed algorithm.

  • PDF

인터넷 기반 이동로봇의 원격제어 (Internet Based Remote Control of a Mobile Robot)

  • 최미영;박장현;김성환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.502-504
    • /
    • 2004
  • With rapidly growing of computer and internet technology, Internet-based tote-operation of robotic systems has created new opportunities in resource sharing, long-distance learning, and remote experimentation. In this paper, remote control system of a mobile robot through the internet has been designed. The internet users can access and command a mobile robot in the real time, receiving the robot's sensor data. The overall system has been tested and its usefulness shown through the experimental results.

  • PDF

Analysis of Indoor Robot Localization Using Ultrasonic Sensors

  • Naveed, Sairah;Ko, Nak Yong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제14권1호
    • /
    • pp.41-48
    • /
    • 2014
  • This paper analyzes the Monte Carlo localization (MCL) method, which estimates the pose of an indoor mobile robot. A mobile robot must know where it is to navigate in an indoor environment. The MCL technique is one of the most influential and popular techniques for estimation of robot position and orientation using a particle filter. For the analysis, we perform experiments in an indoor environment with a differential drive robot and ultrasonic range sensor system. The analysis uses MATLAB for implementation of the MCL and investigates the effects of the control parameters on the MCL performance. The control parameters are the uncertainty of the motion model of the mobile robot and the noise level of the measurement model of the range sensor.

Robust Adaptive Control of a Nonholonomic Mobile Robot

  • Kim, M. S.;Lee, J. J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1999년도 제14차 학술회의논문집
    • /
    • pp.5-8
    • /
    • 1999
  • The main stream of researches on the mobile robot is planning motions of the mobile robot under nonholonomic constraints while only considering kinematic model of a mobile robot. These researches, however, assume that there is some kind of dynamic controller which can produce perfectly the same velocity that is necessary for the kinematic controller. Moreover, there are little results about the problem of integrating the nonholonomic kinematic controller and the dynamic controller for a mobile robot. Also the literature on the robustness of the controller in the presence of uncertainties or external disturbances in the dynamical model of a mobile robot is very few. Thus, in this paper, the robust adaptive controller which can achieve velocity tracking while considering not only kinematic model but also dynamic model of the mobile robot is proposed. The stability of the dynamic system will be shown through the Lyapunov method.

  • PDF

PDA를 이용한 이동로봇 제어 (PDA-based Supervisory Control of Mobile Robot)

  • 김성주;정성호;김용택;전홍태
    • 한국지능시스템학회논문지
    • /
    • 제12권4호
    • /
    • pp.379-384
    • /
    • 2002
  • 본 논문은 PDA(개인용 휴대용 단말기)를 이용하여 원격제어하는 이동로봇 시스템을 구현하였다. 현재 급속도로 발전하는 인터넷 개발 기술 때문에 이를 기반으로 하는 많은 원격 제어 방법들이 제안되어 왔다. 주변환경을 인지 못하는 상황하에서 안내와 인터넷을 통한 이동 로봇 제어를 위하여 PDA를 활용한 제어를 제안한다 이에 제안하는 시스템은 사용자 인터페이스인 PDA와 이동로봇의 컨트롤러인 노트북과 통신을 한다. 이를 위해 TCP/IP 프로토콜을 이용한다. 회전각도 조절방향과 속도에 대한 정보가 PDA에서 이동로봇에 피드백 되며 퍼지 추론엔진으로부터 출력된 새로운 제어값을 PDA가 보내게 된다