• Title/Summary/Keyword: mobile robot control

Search Result 1,465, Processing Time 0.028 seconds

Wireless Communication Real-Time Travelling Control of Mobile Robot by Voice Command (음성명령에 의한 모바일로봇의 무선통신 실시간 주행제어)

  • Shim, Byoung-Kyun;Han, Sung-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.33-38
    • /
    • 2011
  • We describe a research about remote control of mobile robot based on voice command in this paper. Through real-time remote control and wireless network capabilities of an unmanned remote-control experiments and Home Security / exercise with an unmanned robot, remote control and voice recognition and voice transmission are possible to transmit on a PC using a microphone to control a robot to pinpoint of the source. Speech recognition can be controlled robot by using a remote control. In this research, speech recognition speed and direction of self-driving robot were controlled by a wireless remote control in order to verify the performance of mobile robot with two drives.

A study on Mutual Cooperative Control in the Chaos Mobile Robot (카오스 로봇에서의 상호 연동 제어)

  • Bae, Young-Chul;Kim, Chun-Suk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.942-946
    • /
    • 2005
  • In this paper, we propose that the mutual cooperative control in the chaotic mobile robot. In order to achieve mutual cooperative control in the mobile robot, we apply coupled synchronization technique and driven synchronization technique in the mobile robot with obstacle.

  • PDF

A study on Mutual Cooperative Control in the Chaos Mobile Robot (이동 로봇의 연동 제어를 위한 동기화 기법)

  • Bae, Young-Chul;Kim, Chun-Suk;Koo, Young-Duk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.355-359
    • /
    • 2005
  • In this paper, we propose that the synchronization method for mutual cooperative control in the mobile robot. In order to achieve the synchronization for mutual cooperative control in the mobile robot, we apply coupled synchronization technique and driven synchronization technique in the mobile robot with obstacle.

  • PDF

Tele-operation of A Low-cost Un-autonomous Mobile Robot Using A New Fuzzy Command Smoothing Concept (새로운 퍼지 명령 스무딩 개념을 이용한 저가형 비자율주행 이동로봇의 원격제어)

  • Yoo Bong-Soo;Joh Joongseon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.9
    • /
    • pp.809-815
    • /
    • 2004
  • Researches on mobile robots have been mainly focused on the autonomous navigation and a lot of interesting results have been published so far. Most of applications are, however, fancy, unpractical, and very expensive to be used for 'UN-expensive' purpose. Well-known soccer robot may be an example of unpractical application. Un-autonomous mobile robot has, however, potential for a lot of practical applications. Especially, tele-operation of the un-autonomous mobile robot may the central issue of research. Major research topics for the tele-operated un-autonomous mobile robot include development of a force reflecting joystick for tele-operation and development of a sophisticated algorithm for smooth tele-operation. A new concept named fuzzy command smoothing algorithm is proposed in this paper in order to provide smooth motion to a tele-operated mobile robot. It gives smooth motion command to the mobile robot from possibly abrupt quick turn motion command of the joystick using fuzzy logic. Simulation results verify the usefulness of the proposed algorithm.

A vision based mobile robot travelling among obstructions

  • Ishigawa, Seiji;Gouhara, Kouichi;Kouichi-Ide;Kato, Kiyoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10b
    • /
    • pp.810-815
    • /
    • 1988
  • This paper presents a mobile robot that travels employing visual information. The mobile robot is equipped solely with a TV camera as a sensor, and views from the TV camera are transferred to a separately installed micro computer through an image acquisition device. An acquired image of a view is processed there and the information necessary for travel is yielded. Instructions based on the information are then sent from the micro computer to the mobile robot, which causes the mobile robot next action. Among several application programs that have already been developed for the mobile robot other than the entire control program, this paper focuses its attention on the travelling control of the mobile robot in a model environment with obstructions as well as an overview of the whole system. The behaviour the present mobile robot takes when it travels among obstructions was investigated by an experiment, and satisfactory results were obtained.

  • PDF

Position Improvement of a Human-Following Mobile Robot Using Image Information of Walking Human (보행자의 영상정보를 이용한 인간추종 이동로봇의 위치 개선)

  • Jin Tae-Seok;Lee Dong-Heui;Lee Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.5
    • /
    • pp.398-405
    • /
    • 2005
  • The intelligent robots that will be needed in the near future are human-friendly robots that are able to coexist with humans and support humans effectively. To realize this, robots need to recognize their position and posture in known environment as well as unknown environment. Moreover, it is necessary for their localization to occur naturally. It is desirable for a robot to estimate of his position by solving uncertainty for mobile robot navigation, as one of the best important problems. In this paper, we describe a method for the localization of a mobile robot using image information of a moving object. This method combines the observed position from dead-reckoning sensors and the estimated position from the images captured by a fixed camera to localize a mobile robot. Using a priori known path of a moving object in the world coordinates and a perspective camera model, we derive the geometric constraint equations which represent the relation between image frame coordinates for a moving object and the estimated robot's position. Also, the control method is proposed to estimate position and direction between the walking human and the mobile robot, and the Kalman filter scheme is used for the estimation of the mobile robot localization. And its performance is verified by the computer simulation and the experiment.

Sequencing Strategy for Autonomous Mobile Robots in Real Environments (이동로봇 자율주행을 위한 행위모듈의 실행순서 조정기법)

  • 송인섭;박정민;오상록;조영조;박귀태
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.3
    • /
    • pp.297-305
    • /
    • 1999
  • Autonomous mobile robots are required to achieve multiple goals while responding quickly to the dynamic environments. An appropriate robot control architecture, which clearly and systematically defines the relationship among the inputs, the processing functions and the outputs, thus needs to be embedded in the robot controller. This paper proposes a kind of hybrid control architecture which combines the key features of the two well-known robot control architectures; hierarchical and behavioral- based. The overall control architecture consists of three layers, i.e. the highest planner, the middle plan executor, and the lowest monitor and behavior-based controller. In the planned situation, only one behavior module is chosen by the logical coordinator in the plan executor according to the way point bin. In the exceptional situation, the central controller in the plan executor issues an additional control command to reach the planned way point. Several simulations and experiments with autonomous mobile robot show that the proposed architecture enables the robot controller to achieve the multiple sequential goals even in dynamic and uncertain environments.

  • PDF

Building a network model for a mobile robot using sonar sensors (초음파센서를 이용한 이동로보트의 네트워크환경모델 구성)

  • Chung, Hak-Young;Park, Sol-lip;Lee, Jang-Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.5
    • /
    • pp.593-599
    • /
    • 1999
  • A mobile robot in FMS environment should be able to nevigate itself. Therefore, path planning is necessary for the mobile robot to perform its tasks without being lost. Path planning using a network model gives oprimal paths to every pair of nodes but building this model demands accurate information of environments. In this paper, a method to build a network model using sonar sensors is presented. The main idea is to build a quad tree model by using sonar sensors and convert the model to a network model for path planning. The new method has been implemented on a mobile robot. Experimental results show that the mobile robot constructs an accurate network model using inaccurate sonar data.

  • PDF

METRO - A Free Ranging Mobile Robot with a Laser Range Finder (METRO - 레이저 거리계를 장착한 자율 이동로봇)

  • Cha, Young-Youp;Gweon, Dae-Gap
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.3
    • /
    • pp.200-208
    • /
    • 1996
  • This paper describes the mechanism, guidance, sensor system, and navigation algorithm of METRO, a free ranging mobile robot. METRO is designed for use in structured surroundings or factory environments rather than unstructured natural environments. An overview of the physical configuration of the mobile robot is presented as well as a description of its sensor system, an omnidirectional laser range finder. Except for the global path planning algorithm, a guidance and a navigation algorithm with a local path planning algorithm are used to navigate the mobile robot. In METRO the computer support is divided into a supervisor with image processing and local path planning and a slave with motor control. The free ranging mobile robot is self-controlled and all processing being performed on board.

  • PDF

Visual Tracking of Moving Target Using Mobile Robot with One Camera (하나의 카메라를 이용한 이동로봇의 이동물체 추적기법)

  • 한영준;한헌수
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.12
    • /
    • pp.1033-1041
    • /
    • 2003
  • A new visual tracking scheme is proposed for a mobile robot that tracks a moving object in 3D space in real time. Visual tracking is to control a mobile robot to keep a moving target at the center of input image at all time. We made it possible by simplifying the relationship between the 2D image frame captured by a single camera and the 3D workspace frame. To precisely calculate the input vector (orientation and distance) of the mobile robot, the speed vector of the target is determined by eliminating the speed component caused by the camera motion from the speed vector appeared in the input image. The problem of temporary disappearance of the target form the input image is solved by selecting the searching area based on the linear prediction of target motion. The experimental results have shown that the proposed scheme can make a mobile robot successfully follow a moving target in real time.