• Title/Summary/Keyword: mobile code

Search Result 773, Processing Time 0.019 seconds

Research for Application of Interactive Data Broadcasting Service in DMB (DMB에서의 양방향 데어터방송 서비스도입에 관한 연구)

  • Kim, Jong-Geun;Choe, Seong-Jin;Lee, Seon-Hui
    • Broadcasting and Media Magazine
    • /
    • v.11 no.4
    • /
    • pp.104-117
    • /
    • 2006
  • In this Paper, we analyze the application of Interactive Data Broadcasting in DMB(Digital Multimedia Broadcasting) in the accordance with convergence of service and technology. With the acceleration of digital convergence in the Ubiquitous period substantial development of digital media technology and convergence of broadcasting and telecommunication industry are being witnessed. Consequently these results gave rise to newly combined-products such as DMB(Digital Multimedia Broadcasting), WCDMA(Wide-band code division multiple access), Wibro(Wireless Broadband Internet), IP-TV (Internet protocol TV) and HSDPA(High speed downlink packet access). The preparatory stage for the implementation of Interactive Data Broadcasting Service will be reached by the end of December, 2006. DMB is the first result of a successful convergence service between Broadcasting and Telecommunication in new media era. Multimedia technology and services are the core elements of DMB. The Data Broadcasting will not only offer various services of interactive information such News, Weather, Broadcasting Program etc, but also be linked with characteristic function of mobile phone such as calling and SMS(Short Message Service) via Return Channel.

Analytical Method for Sodium Polyacrylate in Processed Food Products by Using Size-exclusion Chromatography (Size-exclusion Chromatography를 활용한 가공식품 중 폴리아크릴산나트륨 분석법 확립)

  • Jeong, Eun-Jeong;Choi, Yoo-Jeong;Lee, Gunyoung;Yun, Sang Soon;Lim, Ho Soo;Kim, MeeKyung;Kim, Yong-Suk
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.6
    • /
    • pp.466-473
    • /
    • 2018
  • An analytical method of sodium polyacrylate in processed food products was developed and monitored by using size-exclusion chromatography. GF-7M HQ column and UV/VIS detector were selected based on peak shape and linearity. Flow rate, column oven temperature, and mobile phase were selected as 0.6 mL/min, $45^{\circ}C$, and 50 mM sodium phosphate buffer of pH 9.0, respectively. Samples for analysis of sodium polyacrylate were extracted with 50 mM sodium phosphate buffer of pH 7.0 for 3 hr at $20^{\circ}C$ and 150 rpm. Analytical method validation revealed proper selectivity and calibration curve was selected in the range of 50-500 mg/L, and correlation coefficient of calibration curve was more than 0.9985. Limit of detection of sodium polyacrylate was 10.95 mg/kg and limit of quantification was 33.19 mg/kg. Accuracy and coefficient of variation for sodium polyacrylate analysis was 99.6-127.6%, 3.0-8.3% for intra-day and 94.3-121.9%, 1.3-2.6% for inter-day, respectively. Sodium polyacrylate was detected in 40 samples among monitored 125 processed food products. Detected contents were less than 0.2%, limited by the Food Additives Code. Results suggest the established size-exclusion chromatography method could be used to analyze sodium polyacrylate in processed food products.

Analytical Method for Determination of Laccaic Acids in Foods with HPLC-PDA and Monitoring (식품 중 락카인산 성분 분리정제를 통한 분석법 확립 및 실태조사)

  • Jae Wook Shin;Hyun Ju Lee;Eunjoo Lim;Jung Bok Kim
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.5
    • /
    • pp.390-401
    • /
    • 2023
  • Major components of lac coloring include laccaic acids A, B, C, and E. The Korean Food Additive Code regulates the use of lac coloring and prohibits its use in ten types of food products including natural food products. Since no commercial standards are available for laccaic acids A, B, C, and E, a standard for lac pigment itself was used to separate laccaic acids from the lac pigment molecule. A standard for each laccaic acid was then obtained by fractionation. To obtain pure lac pigment for use in food by High performance Liquid Chromatography Photo Diode Array (PDA), a C8 column yielded the best resolution among various tested columns and mobile phases. A qualitative analytical method using High Performance Liquid Chromatography (HPLC) Tandem Mass(LC-MS/MS) was developed. The conditions for fast and precise sample preparation begin with extraction using methanol and 0.3% ammonium phosphate, followed by concentration. The degree of precision observed for the analyses of ham, tomato juice and Red pepper paste was 0.3-13.1% (Relative Standard Deviation (RSD%)), degree of accuracy was 90.3-122.2% with r2=0.999 or above, and recovery rate was 91.6-114.9%. The limit of detection was 0.01-0.15 ㎍/mL, and the limits of quantitation ranged from 0.02 to 0.47 ㎍/mL. Lac pigment was not detected in 117 food products in the 10 food categories for which the use of lac pigment is banned. Multiple laccaic acids were detected in 105 food products in 6 food categories that are allowed to use lac color. Lac pigment concentrations range from 0.08 to 16.67 ㎍/mL.