• 제목/요약/키워드: mixture rule

검색결과 258건 처리시간 0.026초

Hot Wall Epitaxy(HWE)에 의한 $ZnGa_2Se_4$단결정 박막 성장과 특성에 관한 연구 (Growth and Characterization of $ZnGa_2Se_4$ Single Crystal Thin Films by Hot Wall Epitaxy)

  • 장차익;홍광준;정준우;백형원;정경아;방진주;박창선
    • 한국결정학회지
    • /
    • 제12권3호
    • /
    • pp.127-136
    • /
    • 2001
  • ZnGa₂Se₄단결정 박막은 수평 전기로에서 함성한 ZnGa₂Se₄다결정을 증발원으로하여, hot wall epitaxy(HWE) 방법으로 증발원과 기판(반절연성-GaAs(100))의 온도를 각각 610℃, 450℃로 고정하여 단결정 박막을 성장하였다. 10 K에서 측정한 광발광 exciton 스펙트럼과 이중결정 X-선 요동곡선(DCRC)의 반치폭(FWHM)을 분석하여 단결정 박막의 최적 성장 조건을 얻었다. Hall효과는 van der Pauw방법에 의해 측정되었으며, 온도에 의존하는 운반자 농도와 이동도는 293 K에서 각각 9.63×10/sup 17/㎤, 296 ㎠/V·s였다. 광전류 봉우리의 10 K에서 단파장대의 가전자대 갈라짐(splitting)에의해서 측정된 Δcr (crystal field splitting)은 183.2meV, △so (spin orbit splitting)는 251.9meV였다. 10K의 광발광 측정으로부터 고품질의 결정에서 볼 수 있는 free exciton 과 매우 강한 세기의 중성 받개 bound exciton등의 피크가 관찰되었다. 이때 중성 받개 bound exciton등의 피크가 관찰되었다. 이때 중성 반개 bound excition의 반치폭과 결합에너지는 각각 11meV와 24.4meV였다. 또한 Hanes rule에 의해 구한 불순물의 활성화 에너지는 122meV였다.

  • PDF

N2-O2 혼합가스에 따른 Teflon의 절연파괴특성 (Breakdown Characteristics of Teflon by N2-O2 Mixture gas)

  • 최은혁;최병숙;박숭규
    • 한국산학기술학회논문지
    • /
    • 제19권1호
    • /
    • pp.69-74
    • /
    • 2018
  • 산업사회의 발달과 더불어 신뢰성 높은 양질의 전기에너지와 운전 및 보수의 간편화, 계통 운용의 신뢰성, 안전성 확보가 요구되고 있다. 본 논문에서는 각종 전력설비에서 SF6을 대체하여 사용되고 있는 친환경절연제 $N_2-O_2$ 혼합가스 고체 절연물의 절연파괴특성과 고체절연재로 사용되고 있는 테프론의 연면절연특성을 압력에 따른 특성을 확인하였다. 대기와 비슷한 성분비 일 때 상대적으로 절연파괴특성이 테프론의 연면절연특성이 안정화되며, Paschen 법칙에 의해 평등전계에 가까운 전극중의 기체의 절연파괴전압은 압력에 비례하여 높아지고 있음을 실험을 통하여 확인하였다. 연면절연파괴전압은 압력에 따라 선형적으로 증가하였으며, 혼합가스의 $O_2$ 가스 혼합비에 따라 절연파괴전압의 차이가 발생하였다. 이는 $O_2$ 가스의 전기적 부성기체의 영향과 분자 간 충돌거리에 의해 연면절연파괴전압이 달라졌고, 본 연구에서 분자 간 충돌거리의 영향이 더 크게 작용하였다. 연면절연특성에 따른 테프론에 적용 가능한 절연파괴전압 관계식을 산출하였다. 이러한 결과는 전력설비의 절연설계 시 기초자료로 사용될 수 있을 것이라 생각된다.

3-메틸펜테인과 에틸렌 글리콜 모노프로필 에테르 및 에틸렌 글리콜 아이소프로필 에테르 혼합물에 대한 2성분계 등온 기-액 상 평형 (Isothermal Vapor-liquid Equilibria for the Binary Mixtures of 3-Methylpentane with Ethylene Glycol Monopropyl Ether and Ethylene Glycol Isopropyl Ether)

  • 형성훈;장성현;김화용
    • Korean Chemical Engineering Research
    • /
    • 제53권3호
    • /
    • pp.302-308
    • /
    • 2015
  • 본 연구에서는 3-Methylpentane을 포함하는 Ethylene glycol monopropyl ether ($C_3E_1$) 및 Ethylene glycol isopropyl ether ($iC_3E_1$) 계면활성제 혼합물에 대한 2성분계 기-액 상 평형을 서로 다른 온도 조건(303.15, 318.15, 333.15K)에서 측정 및 비교하였다. $C_3E_1$은 분자 내 수소결합과 분자 간 수소결합이 동시에 나타나는 자가 회합 성 물질이므로 상 평형 예측을 어렵게 하는 경향이 있다. 본 연구의 목적은 $C_3E_1$ 혼합물과 그 이성질체인 $iC_3E_1$ 혼합물의 상 평형을 각각 측정 및 비교함으로써, 자가 회합 성 물질의 이성질체가 상 평형에 어떠한 영향을 미치는지 알아보는 것이다. 측정된 시스템은 PR-WS-NRTL, PR-WS-UNIQUAC, 그리고 PR-WS-WILSON 모델을 이용하여 각각 계산하고 각 모델의 성능을 비교하였다. 계산에 사용된 모델은 대부분 좋은 결과를 보여주었으며, 특히 PR-WS-NRTL 모델이 가장 좋은 결과를 나타냈다. 또한 측정 시스템 간의 상 평형 차이가 크게 발생하지 않은 것으로 보아 자가 회합 성 물질의 이성질체가 상 평형에 끼치는 영향은 크지 않음을 알 수 있었다.

목질(木質)의 열수추출(熱水抽出) 및 CaCl2 첨가(添加)가 목질(木質)-세멘트 보드의 휨강도(强度) 및 팽윤율(膨潤率)에 미치는 영향(影響) (The Effects of Hot Water Extraction of Wood Meal and the Addition of CaCl2 on Bending Strength and Swelling Ratio of Wood-Cement Board)

  • 안원영;신동소;최돈하
    • Journal of the Korean Wood Science and Technology
    • /
    • 제13권3호
    • /
    • pp.49-53
    • /
    • 1985
  • The effects of pre-treatments, the hot water extraction of wood meal and the addition of chemical ($CaCl_2$) to wood-cement water system on the properties of wood-cement composite such as modulus of rupture (MOR), modulus of elasticity (MOE), water sorption ratio and swelling ratio of resulting boards were studied in this experiment. The wood meals through 0.83mm(20 mesh) and retained on 0.42mm(35 mesh) screen were prepared from Pinus densiflora S. at Z. and Larix leptolepsis G. For hot water extraction, 500 grams of wood meal for each species were heated to boiling with 1,500ml of distilled water in 2-liter beaker for 6 hours. Every 2 hours, the wood meals were washed with boiling distil1ed water and reheated to boiling again. After 6 hours boiling, the boiled wood particles were collected by pouring this particles on 200 mesh screen. The collected particles then washed twice with hot distilled water and dried for 24 hours in an oven at $109{\pm}20^{\circ}C$. A mixture of 663.4 grams of cement with 331.7 grams of wood meal based on oven-dry weight were dry-mixed in a plastic vessel. The mixture was kneaded with 497.6ml of distilled water in the ratio of 1.5ml of water to a gram of wood meal. To add calcium chloride to the mixture as an accelerator, $CaCl_2$ 4% solution by weight per volume, was added to pine-or larch-cement board in the ratio of 3% to cement weight. To set wood-cement board, this mixture was clamped at 30cm ${\times}$ 30cm, in thickness of 1.5cm for 3 days at room temperature, declamped and then placed at open condition for 17 days. The target density was 1.0. The four specimens sized to 5cm in width and 28cm in length were used for MOR and MOE test for each treatment. After MOR test, the tested specimens were cut to the size of 5cm ${\times}$ 5cm for water sorption and swelling test. The twenty specimens used to measure the water sorption ratio (soaking 24 hours) and ten of these were used for swelling ratio measurement The results obtained were as follows: 1) Larch was not suitable for wood-cement boards because larch-cement board developed no strength, but pine showed 97.9kg/$cm^2$ by hot water extraction. 2) To increase MOR, hot water extraction was more effective than the addition of $CaCl_2$ in pine and larch because the $CaCl_2$ addition was seemed to speed up the ratio of cement hydration without reacting with the wood substances. 3) The water sorption ratio was lowered by the addition of $CaCl_2$ to wood-cement system because the chemical additive accelerated the rate of cement hydration. 4) In pine-cement board, the swelling ratio from 0.37 to 0.42 percent was observed in length and the swelling ratio from 0.88 to 2.0 percent in thickness. As a rule, the swelling ratio of wood-cement board was very low and the swelling ratio in thickness was higher than in length.

  • PDF

소니아 들로네(Sonia Delaunay)의 의상디자인에 나타난 모더니티(modernity)의 근원에 관한 연구 -1910년대~1930년대를 중심으로- (A Study on the Origins of Modernity in the Soma Delaunay's Fashion Design)

  • 현선의;배수정
    • 복식
    • /
    • 제55권2호
    • /
    • pp.18-32
    • /
    • 2005
  • The purpose of this study is to find out the origin of perpetuity in the fashion design of Soma Delaunay, who was recognized as a unique designer in the 20th century. Her characteristics of fashion design appeared as dynamism in the incline of op-art using geometric pattern designed on the basis of abstract painting, color contrast between strong original colors, and repeated geometric patterns. The modern image can be explained as modernity in modern fashion and is continued in these days. The origins of modernity analyzed as follows. First, Soma Delaunay developed textile design, considering the use of clothing on the basis of scientific idea. Furthermore, she evolved traditional textile design and making process into a practical and rational way through developing new needlework technique. Second, she tried a new style through a straight silhouette in contrast to Art Nouveau style and the test and mixture of different genres. Third, she expressed the simultaneity of Orphism through the parallel structure of various colors. In particular, she used the contrast of strong and clear original colors to express a rhythm of dynamism and give visual interest through color. Finally, Soma Delaunay attempted to approach the public using clothing, furniture, and curtains with the focus on textiles. It may represent her intention to remove a gap between art and life by understanding the public and their life. As examined above, it can be sad that Soma Delaunay's scientific idea with the flow of industrialization, an open attitude not bound by a rule as an artist, an idea of Avant-garde, the comprehension of various colors and the understanding of the public. These factors lie at the bottom of her fashion design.

Nonlinear thermal buckling behavior of functionally graded plates using an efficient sinusoidal shear deformation theory

  • Bouiadjra, Rabbab Bachir;Bedia, E.A. Adda;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • 제48권4호
    • /
    • pp.547-567
    • /
    • 2013
  • Nonlinear behavior of functionally graded material (FGM) plates under thermal loads is investigated here using an efficient sinusoidal shear deformation theory. The displacement field is chosen based on assumptions that the in-plane and transverse displacements consist of bending and shear components, and the shear components of in-plane displacements give rise to the sinusoidal distribution of transverse shear stress through the thickness in such a way that shear stresses vanish on the plate surfaces. Therefore, there is no need to use shear correction factor. Unlike the conventional sinusoidal shear deformation theory, the proposed efficient sinusoidal shear deformation theory contains only four unknowns. The material is graded in the thickness direction and a simple power law based on the rule of mixture is used to estimate the effective material properties. The neutral surface position for such FGM plates is determined and the sinusoidal shear deformation theory based on exact neutral surface position is employed here. There is no stretching-bending coupling effect in the neutral surface-based formulation, and consequently, the governing equations and boundary conditions of functionally graded plates based on neutral surface have the simple forms as those of isotropic plates. The non-linear strain-displacement relations are also taken into consideration. The thermal loads are assumed as uniform, linear and non-linear temperature rises across the thickness direction. Closed-form solutions are presented to calculate the critical buckling temperature, which are useful for engineers in design. Numerical results are presented for the present efficient sinusoidal shear deformation theory, demonstrating its importance and accuracy in comparison to other theories.

Synthesis and Characterization of Particle-filled Glass/G lass-Ceramic Composites for Microelectronic Packaging (I)

  • Hong, Chang-Bae;Lee, Kyoung-Ho
    • 마이크로전자및패키징학회지
    • /
    • 제6권1호
    • /
    • pp.11-21
    • /
    • 1999
  • For microelectronic packaging application, the crystallizable glass powder in CaO-$A1_2O_3-SiO_2-B_2O_3$system was mixed with various amounts of alumina inclusions (\approx 4 $\mu \textrm{m}$), and its sintering behavior, crystallization behavior, and dielectric constant were examined in terms of vol% of alumina and the reaction between the alumina and the glass. Sintering of the CASB glass powder alone at $900^{\circ}C$ resulted in full densification (99.5%). Sintering of alumina-filled composite at $900^{\circ}C$ also resulted in a substantial denslfication higher than 97% of theoretical density, In this case, the maximum volume percent of alumina should be less than 40%. XRD analysis revealed that there was a partial dissolution of alumina into the glass. This alumina dissolution, however, did not show the particle growth and shape accommodation. Therefore, the sintering of both the pure glans and the alumina-filled composite was mainly achieved by the viscous flow and the redistribution of the glass. Alumina dissolution accelerated the crystallization initiation time at $1000^{\circ}C$ and hindered the densification of the glass. Dielectric constants of both the alumina-filled glass and the glass-ceramic composites were increased with increasing alumina content and followed rule of mixture. In case of the glass-ceramic matrix composites showed relatively lower dielectric constant than the glass matrix composite. Furthermore, as alumina content increased, crystallization behavior of the glass was changed due to the reaction between the glass and the alumina. As alumina reacted with the glass matrix, the major crystallized phase was shifted from wollastonite to gehlenite. In this system, alumina dissolution strongly depended on the particle size: When the particle size of alumina was increased to 15 $\mu\textrm{m}$, no sign of dissolution was observed and the major crystallized phase was wollastonite.

  • PDF

Nonlinear magneto-electro-mechanical vibration analysis of double-bonded sandwich Timoshenko microbeams based on MSGT using GDQM

  • Mohammadimehr, M.;Shahedi, S.
    • Steel and Composite Structures
    • /
    • 제21권1호
    • /
    • pp.1-36
    • /
    • 2016
  • In the present study, the nonlinear magneto-electro-mechanical free vibration behavior of rectangular double-bonded sandwich microbeams based on the modified strain gradient theory (MSGT) is investigated. It is noted that the top and bottom sandwich microbeams are considered with boron nitride nanotube reinforced composite face sheets (BNNTRC-SB) with electrical properties and carbon nanotube reinforced composite face sheets (CNTRC-SB) with magnetic fields, respectively, and also the homogenous core is used for both sandwich beams. The connections of every sandwich beam with its surrounding medium and also between them have been carried out by considering Pasternak foundations. To take size effect into account, the MSGT is introduced into the classical Timoshenko beam theory (CT) to develop a size-dependent beam model containing three additional material length scale parameters. For the CNTRC and BNNTRC face sheets of sandwich microbeams, uniform distribution (UD) and functionally graded (FG) distribution patterns of CNTs or BNNTs in four cases FG-X, FG-O, FG-A, and FG-V are employed. It is assumed that the material properties of face sheets for both sandwich beams are varied in the thickness direction and estimated through the extended rule of mixture. On the basis of the Hamilton's principle, the size-dependent nonlinear governing differential equations of motion and associated boundary conditions are derived and then discretized by using generalized differential quadrature method (GDQM). A detailed parametric study is presented to indicate the influences of electric and magnetic fields, slenderness ratio, thickness ratio of both sandwich microbeams, thickness ratio of every sandwich microbeam, dimensionless three material length scale parameters, Winkler spring modulus and various distribution types of face sheets on the first two natural frequencies of double-bonded sandwich microbeams. Furthermore, a comparison between the various beam models on the basis of the CT, modified couple stress theory (MCST), and MSGT is performed. It is illustrated that the thickness ratio of sandwich microbeams plays an important role in the vibrational behavior of the double-bonded sandwich microstructures. Meanwhile, it is concluded that by increasing H/lm, the values of first two natural frequencies tend to decrease for all amounts of the Winkler spring modulus.

롤 아연된 STS-Al-Mg 이종금속판재의 온도와 변형률속도에 따른 1축인장 변형특성 (Temperature and Strain Rate Dependent Tension Properties of Stainless Steel-Aluminum-Magnesium Multilayered Sheet Fabricated by Roll Bonding)

  • 황범규;이광석;홍순익;이영선
    • 소성∙가공
    • /
    • 제20권3호
    • /
    • pp.257-264
    • /
    • 2011
  • Multilayer(clad) sheets, composed of two or more materials with different properties, are fabricated using the roll-bonding process. A good formability is an essential property for a multilayered sheet in order to manufacture parts by plastic deformation. In this study, the influences of temperature and strain rate on the plastic properties of stainless steel-aluminum-magnesium multilayered(STS-Al-Mg) sheets were investigated. Tensile tests were performed at various temperatures and strain rates on the multilayered sheet and on each separate layer. Fracture of the multilayered sheet was observed to be temperature-dependent. At the base temperature of $200^{\circ}C$, all materials fractured simultaneously. At lower temperatures, the Mg alloy sheet fractured earlier than the other materials. Conversely, the other materials fractured earlier than the Mg alloy sheet at higher temperatures. The uniform and total elongations of the multilayered sheet were observed to be higher than that of each material at a temperature of $250^{\circ}C$. Larger uniform elongations were obtained for higher strain rates at constant temperature. The same trend was observed for the Mg alloy sheet, which exhibited the lowest elongation among the three materials. The tensile strengths and elongations of the single layer sheets were compared to those of the multilayer material. The strength of the multilayered sheet was successfully calculated by the rule of mixture from the values of each single layer. However, no simple correlation between the elongation of each layer and that of the multilayer was obtained.

유니코드 환경에서의 올바른 한글 정규화를 위한 수정 방안 (Correction for Hangul Normalization in Unicode)

  • 안대혁;박영배
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제34권2호
    • /
    • pp.169-177
    • /
    • 2007
  • 현재 유니코드에서 한글텍스트의 정규화 기법은 완성형 현대한글 음절과 옛한글을 표현하는 조합형 한글 그리고 호환 자모등과 같이 사용할 경우 원래의 글자와는 전혀 다른 글자의 조합을 만들어내는 문제점이 있다. 이러한 문제점은 호환 한글 자모 및 기호들의 잘못된 정규화 변환과 유니코드의 한글자모 조합 규칙에서 자모와 완성형 현대한글 음절을 다시 조합하여 한글음절로 사용 할 수 있게 허용한 때문이다. 이는 정규화 형식을 처음 작성할 당시 옛한글의 사용을 고려하지 않았거나, 한글에 대한 올바른 이해가 부족한 상태에서 작성 된데 따른 결과라 하겠다. 따라서 본 연구에서는 유니코드 환경에서의 한글 코드와 특히 최근 들어 Web을 비롯하여 XML과 IDN에서 필연적으로 사용하는 정규화에 따른 문제점을 파악하고 이들을 올바르게 처리하기 위한 정규화의 수정 방안과 조합형 한글의 조합 규칙에 대한 수정 방안을 제안한다.