• Title/Summary/Keyword: mixture 모델

Search Result 750, Processing Time 0.037 seconds

Real-time Flame Detection Using Colour and Dynamic Features of Flame Based on FFmpeg (화염의 색상 및 동적 특성을 이용한 FFmpeg 기반 실시간 화염 검출)

  • Kim, Hyun-Tae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.9
    • /
    • pp.977-982
    • /
    • 2014
  • In this paper, we propose a system which can detect the flame in real time from the high-quality IP camera. First, open directly the RTSP streams transmitted from the IP camera using the library FFmpeg as opening a video file. The second thing is to extract the background images from video signal using Gaussian mixture model. Then the foreground images are obtained through subtracting operation between the input image and the background image. Separated foreground image through a mathematical morphology operation are considered as candidate area. By analysing colour information and dynamic characteristics of the candidate area, flame is determined finally. Through the experiments with input videos from IP camera, the proposed algorithms were useful to detect flames.

Flame Extinguishing Concentrations of Mixed Gaseous Agents (가스계 혼합소화약제의 불꽃소화농도)

  • 김재덕;임종성;이윤우;이윤용
    • Fire Science and Engineering
    • /
    • v.15 no.1
    • /
    • pp.34-40
    • /
    • 2001
  • Fire extinguishing efficiency of mixed gaseous agents were investigated by the cup-burner test and predicting by the model of flame extinguishing concentration. The binary mixed agents that tested were carbon dioxide/HFC-23, carbon dioxide/HCFC-22, carbon dioxide/HFC-227ea, carbon dioxide/HFC-125, carbon dioxide/FIC-13I1, Hexafluoropropylene/HFC-23 and ternary mixed agents were carbon dioxide/HFC-23/HFC-l34a, carbon dioxide/HFC-23/HFC-227ea, carbon dioxide/HFC-23/HFC-125. A model which contains the flame extinguishing concentration and composition of pure components predicted the flame extinguishing concentration of mixture well. This model was superior when each component of the mixture exhibit physical fire extinguishing performance.

  • PDF

Numerical Analysis on Cooling Characteristics of Oxidizer-Rich Preburner (산화제 과잉 예연소기 냉각 성능 수치 해석)

  • Lee, Seon-Mi;Ha, Seong-Up;Lee, Soo Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.3
    • /
    • pp.67-75
    • /
    • 2013
  • The numerical analysis for the verification of preburner's cooling characteristics applying to kerosene-LOx rocket engine has been fulfilled. The distribution of combustion gas properties in primary combustion zone was calculated by the mixture ratio based on head injector arrangement, the properties of oxygen flowing in wall channels as coolant were applied under real-gas conditions, and multi-phase mixing model was employed to calculate the mixing process of primary combustion zone with liquid oxygen which was used for wall cooling. The results of numerical analysis were compared with the experimental results, hence thermo-physical properties in cooling channels and a combustor could be quantitatively identified.

Vocabulary Recognition Performance Improvement using k-means Algorithm for GMM Support (GMM 지원을 위해 k-means 알고리즘을 이용한 어휘 인식 성능 개선)

  • Lee, Jong-Sub
    • Journal of Digital Convergence
    • /
    • v.13 no.2
    • /
    • pp.135-140
    • /
    • 2015
  • General CHMM vocabulary recognition system is model observation probability for vocabulary recognition of recognition rate's low. Used as the limiting unit is applied only to some problem in the phoneme model. Also, they have a problem that does not conform to the needs of the search range to meaning of the words in the vocabulary. Performs a phoneme recognition using GMM to improve these problems. We solve the problem according to the limited search words characterized by an improved k-means algorithm. Measure the effectiveness represented by the accuracy and reproducibility as compared to conventional system performance experiments. Performance test results accuracy is 83%p, and recall is 67%p.

Illumination Influence Minimization Method for Efficient Object (영상에서 효율적인 객체 추출을 위한 조명 영향 최소화 기법)

  • Kim, Jae-Seoung;Lee, Ki-Jung;Whangbo, Taeg-Keun
    • Journal of Digital Contents Society
    • /
    • v.14 no.1
    • /
    • pp.117-124
    • /
    • 2013
  • This paper suggests the robust method of extraction for moving objects in illumination variation by using image sequence from an immovable camera. The most difficult part of the implication is the effect by illumination and noise. The object area is hardly estimated when the dusky area occurs in illumination variation by time change. This thesis describes the extraction of moving objects employed by Gaussian mixture model which is noise robust measure. Also, the report suggests the elimination method of illumination part in input image by the representative illumination image which is defined to minimize the illumination influence.

A Study for Video-based Vehicle Surveillance on Outdoor Road (실외 도로에서의 영상기반 차량 감시에 관한 연구)

  • Park, Keun-Soo;Kim, Hyun-Tae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.11
    • /
    • pp.1647-1654
    • /
    • 2013
  • Detection performance of the vehicle on the road depends on weather conditions, the shadow by the movement of the sun, or illumination changes, etc. In this paper, a vehicle detection system in conjunction with a robust background estimate algorithm to environment change on the road in daytime is proposed. Gaussian Mixture Model is applied as background estimation algorithm, and also, Adaboost algorithm is applied to detect the vehicle for candidate region. Through the experiments with input videos obtained from a various weather conditions at the same actual road, the proposed algorithm were useful to detect vehicles in the road.

Proposal for Compressive Strength Development Model of Lightweight Aggregate Concrete Using Expanded Bottom Ash and Dredged Soil Granules (바텀애시 및 준설토 기반 인공경량골재 콘크리트의 압축강도 발현 모델 제시)

  • Lee, Kyung-Ho;Yang, Keun-Hyeok
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.7
    • /
    • pp.19-26
    • /
    • 2018
  • This study tested 25 lightweight aggregate concrete (LWAC) mixtures using the expanded bottom ash and dredged soil granules to examine the compressive strength gain of such concrete with different ages. The test parameters investigated were water-to-cement ratios and the natural sand content for the replacement of lightweight fine aggregate. The compressive strength gain rate in the basic equation specified in fib model code was experimentally determined in each mixture and then empirically formulated as a function of the water-to-cement ratio and oven-dried density of concrete. When compared with 28-day compressive strength, the tested LWAC mixtures exhibited relatively low gain ratios (0.49~0.82) at an age of 3 days whereas the gain ratios (1.16~1.41) at 91 days were higher than that (1.05~1.15) of the conventional normal-weight concrete. Thus, the fib model equations tend to overestimate the early strength gain of LWAC but underestimate the long-term strength gain. The proposed equations are in good agreement with the measured compressive strength development of LWAC at different ages, indicating that the mean and standard deviation of the normalized root mean square errors determined in each mixture are 0.101 and 0.053, respectively.

Spectrum Based Excitation Extraction for HMM Based Speech Synthesis System (스펙트럼 기반 여기신호 추출을 통한 HMM기반 음성합성기의 음질 개선 방법)

  • Lee, Bong-Jin;Kim, Seong-Woo;Baek, Soon-Ho;Kim, Jong-Jin;Kang, Hong-Goo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.1
    • /
    • pp.82-90
    • /
    • 2010
  • This paper proposes an efficient method to enhance the quality of synthesized speech in HMM based speech synthesis system. The proposed method trains spectral parameters and excitation signals using Gaussian mixture model, and estimates appropriate excitation signals from spectral parameters during the synthesis stage. Both WB-PESQ and MUSHRA results show that the proposed method provides better speech quality than conventional HMM based speech synthesis system.

An Improved Speech Absence Probability Estimation based on Environmental Noise Classification (환경잡음분류 기반의 향상된 음성부재확률 추정)

  • Son, Young-Ho;Park, Yun-Sik;An, Hong-Sub;Lee, Sang-Min
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.7
    • /
    • pp.383-389
    • /
    • 2011
  • In this paper, we propose a improved speech absence probability estimation algorithm by applying environmental noise classification for speech enhancement. The previous speech absence probability required to seek a priori probability of speech absence was derived by applying microphone input signal and the noise signal based on the estimated value of a posteriori SNR threshold. In this paper, the proposed algorithm estimates the speech absence probability using noise classification algorithm which is based on Gaussian mixture model in order to apply the optimal parameter each noise types, unlike the conventional fixed threshold and smoothing parameter. Performance of the proposed enhancement algorithm is evaluated by ITU-T P.862 PESQ (perceptual evaluation of speech quality) and composite measure under various noise environments. It is verified that the proposed algorithm yields better results compared to the conventional speech absence probability estimation algorithm.

A COMPUTATIONAL STUDY ABOUT BEHAVIOR OF AN UNDERWATER PROJECTILE USING A HOMOGENEOUS MIXTURE MODEL ON UNSTRUCTURED MESHES (비정렬 격자계에서 균질혼합 모델을 이용한 수중 운동체의 거동에 관한 수치적 연구)

  • Jo, S.M.;Choi, J.H.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.21 no.3
    • /
    • pp.15-23
    • /
    • 2016
  • In the present study, two phase flows around a projectile vertically launched from an underwater platform have been numerically investigated by using a three dimensional multi-phase RANS flow solver based on pseudo-compressibility and a homogeneous mixture model on unstructured meshes. The relative motion between the platform and projectile was described by six degrees of freedom equations of motion with Euler angles and a chimera technique. The propulsive power of the projectile was modeled as the fluid force acting on the lower surface of the body by the compressed air emitted from the underwater platform. Various flow conditions were considered to analyze the fluid-dynamics motion parameters of the projectile. The water level of platform and the current speed around the projectile were the main parametric variables. The numerical calculations were conducted up to 0.75sec in physical time scale. The dynamics tendency of the projectile was almost identical with respect to the water level variation due to the constant buoyancy term. The moving speed of the projectile along the vertical axis inside the platform decreased when the current speed increased. This is because the inflow from outside of the platform impeded development of the compressed air emitted from the floor surface of the launch platform. As a result, the fluid force acting on the lower surface of the projectile decreased, and injection time of the projectile from the platform was delayed.