• Title/Summary/Keyword: mixing procedure

Search Result 128, Processing Time 0.032 seconds

Guided bone regeneration

  • Kim, Young-Kyun;Ku, Jeong-Kui
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.46 no.5
    • /
    • pp.361-366
    • /
    • 2020
  • Guided bone regeneration (GBR) is a surgical procedure that utilizes bone grafts with barrier membranes to reconstruct small defects around dental implants. This procedure is commonly deployed on dehiscence or fenestration defects ≥2 mm, and mixing with autogenous bone is recommended on larger defects. Tension-free primary closure is a critical factor to prevent wound dehiscence, which is critical cause of GBR failure. A barrier membrane should be rigidly fixed without mobility. If the barrier is exposed, closed monitoring should be utilized to prevent secondary infection.

ASSESSMENT OF THERMAL FATIGUE IN MIXING TEE BY FSI ANALYSIS

  • Jhung, Myung Jo
    • Nuclear Engineering and Technology
    • /
    • v.45 no.1
    • /
    • pp.99-106
    • /
    • 2013
  • Thermal fatigue is a significant long-term degradation mechanism in nuclear power plants. In particular, as operating plants become older and life time extension activities are initiated, operators and regulators need screening criteria to exclude risks of thermal fatigue and methods to determine significant fatigue relevance. In general, the common thermal fatigue issues are well understood and controlled by plant instrumentation at fatigue susceptible locations. However, incidents indicate that certain piping system Tee connections are susceptible to turbulent temperature mixing effects that cannot be adequately monitored by common thermocouple instrumentations. Therefore, in this study thermal fatigue evaluation of piping system Tee-connections is performed using the fluid-structure interaction (FSI) analysis. From the thermal hydraulic analysis, the temperature distributions are determined and their results are applied to the structural model of the piping system to determine the thermal stress. Using the rain-flow method the fatigue analysis is performed to generate fatigue usage factors. The procedure for improved load thermal fatigue assessment using FSI analysis shown in this study will supply valuable information for establishing a methodology on thermal fatigue.

A Numerical Study on Mixing Characteristics of the Chemical Injection Tank

  • Chang, Keun-Sun;Park, Byeong-Ho
    • Nuclear Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.58-67
    • /
    • 1997
  • A numerical study has been peformed to investigate the flow and mixing characteristics of a chemical injection tank in the chemical and volume control system (CVCS) of Yonggwang 5&6 (YGN 5&6). This study was undertaken to provide a basis for modification of the previous design (YGN 3&4) which gave a lot of difficulties in installation and operation of the chemical injection system during the start-up test because it needs a special reciprocating pump with a high actual head. For the tank of length-to-diameter ratios (L/D) of 1,2 and 3, each with and without a baffle inside, calculation results were obtained by solving the unsteady laminar two-dimensional elliptic forms of governing equations for the mass, momentum and species concentration. Finite-difference method was used to obtain discretized equations, and the SIMPLER solution algorithm, which was developed based on the staggered grid control volume, was employed for the calculation procedure. Results showed that the baffle is very effective in enhancing the mixing in the tank and that a baffle should be installed near the tank entrance in order to 110 chemicals into the reactor coolant system (RCS) within the operating time required.

  • PDF

ANALYSIS OF TWOPHASE FLOW MODEL EQUATIONS

  • Jin, Hyeonseong
    • Honam Mathematical Journal
    • /
    • v.36 no.1
    • /
    • pp.11-27
    • /
    • 2014
  • In this paper, we propose closures for multi-phase flow models, which satisfy boundary conditions and conservation constraints. The models governing the evolution of the fluid mixing are derived by applying an ensemble averaging procedure to the microphysical equations characterized by distinct phases. We consider compressible multi species multi-phase flow with surface tension and transport.

Enhanced Mechanical Properties of Functionalized Graphene Oxide/linear Low Density Polyethylene Composites Prepared by Melt Mixing

  • Chhetri, Suman;Samanta, Pranab;Murmu, Naresh Chandra;Kuila, Tapas;Lee, Joong Hee
    • Composites Research
    • /
    • v.29 no.4
    • /
    • pp.173-178
    • /
    • 2016
  • Graphene oxide (GO) was concurrently reduced and functionalized using long alkyl chain dodecyl amine (DA). The DA functionalized GO (DA-G) was assumed to disperse homogenously in linear low density polyethylene (LLDPE). Subsequently, DA-G was used to fabricate DA-G/LLDPE composites by melt mixing technique. Fourier transform infrared spectra analysis was performed to ascertain the simultaneous reduction and functionlization of GO. Field emission scanning electron microscopy analysis was performed to ensure the homogenous distribution and dispersion of DA-G in LLDPE matrix. The enhanced storage modulus value of the composites validates the homogenous dispersion of DA-G and its good interfacial interaction with LLDPE matrix. An increased in tensile strength value by ~ 64% also confirms the generation of good interface between the two constituents, through which efficient load transfer is possible. However, no significant improvement in glass transition temperature was observed. This simple technique of fabricating LLDPE composites following industrially viable melt mixing procedure could be realizable to developed mechanically strong graphene based LLDPE composites for future applications.

Interpretation of Hydrothermal Synthesis of BaTiO3 Powder (BaTiO3 분말의 수열합성 해석)

  • Oh, Jung Kang;Seo, Kyung Won
    • Applied Chemistry for Engineering
    • /
    • v.10 no.4
    • /
    • pp.509-514
    • /
    • 1999
  • In Preparing $BaTiO_3$ powder under hydrothermal conditions, effects of reaction period feedstock concentration and mixing rate on crystallinity, mean size and size distribution of particles were studied. Experimental results showed that the particle size became smaller with its narrow distribution as the reaction period and mixing rate increased, but feedstock concentration decreased in contrast with the results based on the classical nucleation-growth model. From these results, $BaTiO_3$ particles seem to be prepared hydrothermally through a multiple reaction procedure that includes dissolution, precipitation, hydrolysis-condensation, aggregation, diffusion and transformation.

  • PDF

International Symposium and Collaborative Study on Deep Cement Mixing, Okinawa 2009 (2009 오키나와 Deep Mixing 심포지엄 및 공동연구)

  • Jeong, Gyeong-Hwan;Shin, Min-Shik;Han, Gyeong-Tae;Lee, Jung-Hwa;Kim, Jae-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.972-978
    • /
    • 2008
  • Quality Assurance of Deep Mixing to fulfill the requirements of geotechnical design cannot be achieved only by the process control During production conducted by the deep mixing contractor but it should involve relevant activities that are carried out prior to, during and after the construction by all the parties involved in a deep mixing project. The requirement is different for different application, and hence, QA/QC method/procedure and verification technique may be different for different application. In order to maintain the high quality of deep mixing work in the global market, it is necessary to conduct a research project, such as investigation of illustrations, the variety of existing QA/QC methods/procedures, the correlation between the outcomes of different QA/QC methods. In these reason, it has been held the international meeting to discuss them, in that kind of activities in 2009 it will be held Symposium. Also Collaborative study for QA/QC is on goin, and conduction by all participated members. The subject for collaborative study are, task 1 : investigation of laboratory tests procedures, task 2 : comparing of different laboratory tests procedures, task 3 : QA/QC method/procedures, task 4 : integrated Task1 ~task 3. The discussion of the results in all task will be held in the Symposium separately. In this paper, it was presented four tasks. Also the results in task 1 and 2 conducting domestically until now, such as investigation of laboratory test procedures, effect on the unconfined compressive strength by aging temperature and by delayed time.

  • PDF

COMPARISON OF THE ACCURACY OF STONE CASTS MADE FROM ALGINATE IMPRESSION MATERIAL BY MIXING METHODS AND APPLICATION OF TRAY ADHESIVE (알지네이트 인상재의 혼합방법과 트레이 어드헤시브 도포에 따른 모형의 정확도 비교)

  • Kim Jin-Hyung;Chung Moon-Kyu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.5
    • /
    • pp.492-501
    • /
    • 2001
  • The use of alginate impression materials today is prevalent because of its efficiency and simplicity in clinical settings. Unfortunately, the simplicity of the procedure tends to lull the dentist into a sense of well-being, and lead him into using careless or sloppy technique. Alginate impression materials are used to fabricate diagnostic and preliminary casts, and the final cast. Incorrect use of this material is known to affect the accuracy of the final prosthesis. The purpose of this study was to compare the effect of different mixing methods of alginate impression material and tray adhesive on the accuracy of the stone cast produced by each method. A total of 30 stone casts were produced by using 3 different types of mixing methods (10 stone cast for each mixing method, respectively). The first method utilized an automatic-mixing machine to mix alginate while the second method was carried out manually, strictly following manufacturer's instructions. The third method also involved manual mixing, but did not follow the manufacturer's instructions and was done in a random fashion. Also, 20 additional stone casts were produced by using alginate with or without tray adhesives were included in the study to evaluate effects of tray adhesives on the accuracy of alginate impression. 10 stone casts were produced by adding tray adhesives to the interior surface of the impression tray prior to taking the impression. The other 10 excluded this step. A total of 50 stone casts were analyzed by the three-dimensional measuring machine to measure and compare the dimensional changes of the impression material of each group. The results are as follows. 1. No significant difference was found between the automatic mixing group and the manually-mixing group(p>0.05). 2. For the group that followed manufacturer's instructions, less dimensional changes were record ed than the group that didn't in measuring distanced 4(p<0.05). 3. The group that used tray adhesives showed less dimensional changes(p<0.05). The findings revealed that mechanical methods of mixing alginate impression materials had little influence on dimensional changes. However, it is proven that following manufacturers instructions in alginate impression taking is an important step in acquiring accurate impressions and tray adhesives may play an important role in enhancing the results.

  • PDF

Investigation of flexural behavior of a prestressed girder for bridges using nonproprietary UHPC

  • Pham, Hoa D.;Khuc, Tung;Nguyen, Tuan V.;Cu, Hung V.;Le, Danh B.;Trinh, Thanh P.
    • Advances in concrete construction
    • /
    • v.10 no.1
    • /
    • pp.71-79
    • /
    • 2020
  • Ultra-high-performance concrete (UHPC) is recognized as a promising material in future civil engineering projects due to its outstanding mechanical and durability properties. However, the lack of local UHPC materials and official standards, especially for prestressed UHPC structures, has limited the application of UHPC. In this research, a large-scale prestressed bridge girder composed of nonproprietary UHPC is produced and investigated. This work has two objectives to develop the mixing procedure required to create UHPC in large batches and to study the flexural behavior of the prestressed girder. The results demonstrate that a sizeable batch of UHPC can be produced by using a conventional concrete mixing system at any precast factory. In addition, incorporating local aggregates and using conventional mixing systems enables regional widespread use. The flexural behavior of a girder made by this UHPC is investigated including flexural strength, cracking pattern and development, load-deflection curve, and strain and neutral axis behaviors through a comprehensive bending test. The experimental data is similar to the theoretical results from analytical methods based on several standards and recommendations of UHPC design.

On the validation of ATHLET 3-D features for the simulation of multidimensional flows in horizontal geometries under single-phase subcooled conditions

  • Diaz-Pescador, E.;Schafer, F.;Kliem, S.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3567-3579
    • /
    • 2022
  • This paper provides an assessment of fluid transport and mixing processes inside the primary circuit of the test facility ROCOM through the numerical simulation of Test 2.1 with the system code ATHLET. The experiment represents an asymmetric injection of cold and non-borated water into the reactor coolant system (RCS) of a pressurized water reactor (PWR) to restore core cooling, an emergency procedure which may subsequently trigger a core re-criticality. The injection takes place at low velocity under single-phase subcooled conditions and presents a major challenge for the simulation in lumped parameter codes, due to multidimensional effects in horizontal piping and vessel arising from density gradients and gravity forces. Aiming at further validating ATHLET 3-D capabilities against horizontal geometries, the experiment conditions are applied to a ROCOM model, which includes a newly developed horizontal pipe object to enhance code prediction inside coolant loops. The obtained results show code strong simulation capabilities to represent multidimensional flows. Enhanced prediction is observed at the vessel inlet compared to traditional 1-D approach, whereas mixing overprediction from the descending denser plume is observed at the upper-half downcomer region, which leads to eventual deviations at the core inlet.