• Title/Summary/Keyword: mixing kneader

Search Result 5, Processing Time 0.017 seconds

Influence of Screw Rotors Tip Angle on Mixing Performance for One Novel Twin-screw Kneader (2축 스크류 니더의 설계에서 스크류 로터 팁의 각도가 믹싱성능에 미치는 영향)

  • Wei, Jing;Chen, Dabing;Zhou, Dongming;Zhang, Aiqiang;Yang, Yuliang
    • Polymer(Korea)
    • /
    • v.39 no.3
    • /
    • pp.441-452
    • /
    • 2015
  • Twin-screw kneader is an efficient polymer processing equipment. In this paper, the mixing performance of one novel intermeshing counter-rotating twin-screw kneader with different tip angles of the male rotor is simulated using the mesh superimposition technique (MST). Statistical analysis is carried out for the flow field using particle tracking technique, and distributive mixing performance is evaluated using the residence time distribution and segregation scale, while the dispersive mixing performance is estimated using the parameters such as shear rate, stretching rate and mixing index. The results show that the best distributive mixing performance is achieved when the tip angle is 0o, while the optimal dispersive mixing performance is obtained when the tip angle is 20o. The results in this paper provide a data basis for the selection of parameters and optimization of the performance for the screw rotors.

Effect of 1,3-Diphenyl-guanidine (DPG) Mixing Step on the Properties of SSBR-silica Compounds

  • Lim, Seok-Hwan;Lee, Sangdae;Lee, Noori;Ahn, Byeong Kyu;Park, Nam;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.51 no.2
    • /
    • pp.81-92
    • /
    • 2016
  • 1,3-Diphenylguanidine (DPG) is commonly used as a secondary accelerator which not only acts as booster of cure but also activating silanization reaction. The aim of this study is to increase the interaction between silica and rubber by using DPG. In this study, mixing was proceeded in two steps. The T-1 compound is mixed DPG with silica and silane coupling agent in the kneader at high temperature which is named as $1^{st}$ mixing step. T-3 compound is mixed DPG with curatives in the two-roll mill at low temperature which is named as $2^{nd}$ mixing step. The T-2 compound is mixed a half of DPG in $1^{st}$ mixing step and the remainder is mixed in $2^{nd}$ mixing step. Total DPG content was equal for all compounds. When DPG is mixed with silica, silane coupling agent during the $1^{st}$ mixing step, a decrease in cure rate and an increase in scorch time can be seen. This indicates that DPG is adsorbed on the surface of silica. during rubber processing. However, bound rubber content is increased and dynamic properties are improved. These results are due to the highly accelerated silanization reaction. However, there are no significant difference in 100%, 300% modulus.

Influence of Silane Coupling Agent Treatments on Physical Properties of Rubbery Materials (실란 커플링제 처리방법이 고무 물성에 미치는 영향)

  • Woon, Jin-Bok
    • Elastomers and Composites
    • /
    • v.36 no.4
    • /
    • pp.237-245
    • /
    • 2001
  • A study was made on the chemical treatment of silica and silane coupling agents, bistriethox ysilylpropyltetrasulfide(Si 69) and ${\gamma}$-mercaptopropyltrimethoxy silane (MPS) for reinforcement of silica formulation. The effects of chemical treatment method and the most popular two coupling agents were examined. The results clearly indicate that the wet method, coupling agent is combined chemically with the silica prior to mixing, has more dispersion, wetting ability, dynamic properties and stability than the dry method, coupling agent is premixed directly with the silica. The mixing was done using a bench-type kneader having two mixing cam and a two-roll mill, under approximately similar conditions. The physical properties of SBR vulcanizates give rise to marked improvements by addition of Si 69 and MPS in comparison with without silane coupling agents. The optimum amount of Si 69 and MPS was 2 w/w% by experiments in the dry method but was 4 w/w% by EA and TGA analysis in the wet method.

  • PDF

The effect of the Knead Processing of the Precured CIIR on the Physical Properties of the BR/PCIIR Composites (CIIR 예비가교물의 니더가공이 BR/PCIIR 복합체의 물리적 특성에 미치는 영향)

  • Pyo, Kyungduk;Park, Chacheol
    • Elastomers and Composites
    • /
    • v.49 no.2
    • /
    • pp.127-133
    • /
    • 2014
  • Rubber composites were prepared by kneading the precured CIIR with BR in order to analyze the effects of the dispersed phase on the BR/PCIIR composites. The particle size of domain in BR/CIIR composites was decreased and homogeneously dispersed by kneading process the precured CIIR used as dispersed phase in kneader once again. In case of BR/PCIIR40, the kneading time of precured CIIR with BR did not have any effect on the rebound resilience and the hardness of the composite. The tensile strength of the composite prepared by kneading precured CIIR particles and then mixing them with BR increased significantly more than 10% when compared to that of the composite which was not kneaded. The composite maintained the surface friction property while increasing anti-abrasion and mechanical properties significantly by kneading the precured CIIR used as dispersed phase.