• Title/Summary/Keyword: mixing efficiency

Search Result 912, Processing Time 0.021 seconds

The Ecosystem of the Southern Coastal Waters of the East Sea, Korea I. Phytoplankton Community Structure and Primary Productivity in September, 1994 (한국 동해 남부 연안생태계 연구 1. 1994년 9월에 있어서의 식물플랑크톤의 군집구조와 1차생산력)

  • LEE Joon-Baek;HAN Myung-Soo;YANG HanR-Seob
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.1
    • /
    • pp.45-55
    • /
    • 1998
  • Phytoplankton community and primary productivity have been investigated in a fall season in the southern coastal waters of the last Sea, Korea. A strong thermocline formed at the 20\~60\;m$ layer and a cold water mass also existed in the bottom around Yong-il Bay. The offshore of the surveyed area was likely to be influenced by relatively warmer water, whereas the inshore represented Higher primary productivity with lower water temperature and lower salinity. A total of 133 species of phytoplankton occurred, representing 107 spp. of diatom, 23 spp. of dinoflagellate 3 spp. of silicoflagellate. Skeletonema costatum and Asterionellepsis glacialis were most predominant with more than $30\%$ dominance ratio, while Leptocylindrus danicus was also dominant at all transect lines. Standing crops of phytoplankton ranged from $2.7{\times}10^3\;to\;141.6{\times}10^3\;cell^{\ell-1}$. Chlorophyll a concentration varied with stations and layers, but the $30\~50$ m layer showed maximun with about $1.18{\mu}g{\ell}^{-1}$ rather than at the surface layer. It is believed that the maximun in standing crops and chlorophyll of phytoplankton formed at the $20\~50$ m layer above the thermocline during the survey. Phytoplankton primary productivity ranged from 0.32 to 3.04 mgC $m^{-3}\;hr^{-1}$, showing higher at the inshore than at the offshore. The range of integrated primary productivity was $263.3\~1085.5 mgC\;m^{-2}\;day^{-1}$ for the euphotic layer. Photosysthesis rates varied with the range from 0.76 to 8.04 mgC mgChl $\alpha^{-1}\;hr^{-1}$. Phytoplankton photosynthesis at the inshore was saturated at lower irradiance ($15\~35\%$ of surface) and showed higher efficiency, Thus, it revealed that the phytoplankton community probably adapted to the middle of euphotic layer because the depth of mixing layer became thinner due to the formation of thermocline.

  • PDF

Effects of Fermented Mixed Organic Fertilizer Utilizing By-Products on Soil Properties and the Yield of Organic Lettuce (부산물 활용 발효 유기질비료 처리에 따른 유기 상추 토양 특성 및 수량에 미치는 영향)

  • An, Nan-Hee;Lee, Sang-min;Hwang, Hyun-Young;Park, Sang-Gu;Lee, Cho-Rong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.3
    • /
    • pp.41-48
    • /
    • 2021
  • This study aimed to develop an alternative organic fertilizer to castor oil cake-based fertilizers. To assess the nutrient effect of the developed fermented mixed organic fertilizers, the yield of lettuce and soil characteristics after growth were analyzed and compared to those of a trial using a mixed expeller cake fertilizer. Two fermented mixed organic fertilizers, FA and FB, each containing 5.0% nitrogen, 2.6% phosphate, and 1.4% potassium, were produced by mixing different ratios of rice bran, dried distillers grains, sesame oil meal, and fish meal. This study was conducted with six trials: untreated, mixed expeller cake fertilizer, and the fermented mixed organic fertilizers FA and FB. Based on the amount of nitrogen fertilization (70 kg ha-1) on the lettuce, the fermented mixed organic fertilizers FA and FB were applied at 100% and 150%, respectively, and the mixed oil cake was applied at 100%. As the amount of treatment increased, there was no significant difference except the number of leaves in FA treatment. The yields from the FA100 and FB100 treatments were 38.2 and 40.8 Mg ha-1, respectively, which was not significantly different from that of the mixed expeller cake fertilizer treatment at 38.3 Mg ha-1. In addition, the nitrogen uptake and utilization efficiency of the lettuce were not significantly different between mixed expeller cake fertilizer and fermented mixed organic fertilizer treatments. Analysis of the chemical properties of the soil after the trial showed that he mixed expeller cake fertilizer treatment showed the lowest pH. There were no significant differences in electrical conductivity, content of soil organic matter, available phosphate, and exchangeable cation among the fertilizer treatments. However, the bacterial and actinomyces density was higher in the soil from the fertilizer trials than in the non-fertilizer trials. These results indicated that the two tested fermented mixed organic fertilizers had nourishing effects and soil characteristics that were similar to those of the mixed expeller cake fertilizer. Thus, farmers can use these fermented mixed organic fertilizers as alternatives to castor oil cakes for the cultivation of organic lettuce.