• 제목/요약/키워드: mixing effects

검색결과 1,429건 처리시간 0.025초

Effects of Turbulent Mixing and Void Drift Models on the Predictions of COBRA-IV-I

  • Yoo, Yeon-Jong;Hwang, Dae-Hyun;Nahm, Kee-Yil;Sohn, Dong-Seong
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 춘계학술발표회논문집(2)
    • /
    • pp.284-289
    • /
    • 1996
  • The predictions of the COBRA-IV-I code with the modified turbulent mixing and void drift models have been compared with the diabatic two-phase flow data on equilibrium quality. The turbulent mixing model based on an equal mass exchange of the existing COBRA-IV-I code has been modified to that based on an equal volume exchange between adjacent subchannels, and a void drift model has been newly incorporated in the code. To evaluate the performance of the equal volume exchange turbulent mixing model and the effects of the void drift model, the diabatic steam-water two-phase flow data obtained for the 9-rod bundle test under the typical operating conditions of the boiling water reactor(BWR) conducted by the General Electric (GE) were analyzed by the modified COBRA-IV-I code. The analysis indicates that the equal volume exchange turbulent mixing model with void drift predicts the observed two-phase flow data trends better than the equal mass exchange model, and to predict the correct data trends a more physically based void drift model need to be developed.

  • PDF

Study of the Supersonic Ejector-Diffuser System with a Mixing Guide Vane at the Inlet of Secondary Stream

  • ;;김희동
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.182-186
    • /
    • 2011
  • Ejector-diffuser system has long been used in many diverse fields of engineering applications and it has advantages over other fluid machinery, because of no moving parts and structural simplicity. This system makes use of high-pressure primary stream to entrain the low-pressure secondary stream through pure shear actions between two streams. In general, the flow field in the ejector-diffuser system is highly complicated due to turbulent mixing, compressibility effects and sometimes flow unsteadiness. A fatal drawback of the ejector system is in its low efficiency. Many works have been done to improve the performance of the ejector system, but not yet satisfactory, compared with that of other fluid machinery. In the present study, a mixing guide vane was installed at the inlet of the secondary stream for the purpose of the performance improvement of the ejector system. A CFD method has been applied to simulate the supersonic flows inside the ejector-diffuser system. The present results obtained were validated with existing experimental data. The mixing guide vane effects are discussed in terms of the entrainment ratio, total pressure loss as well as pressure recovery.

  • PDF

혼합층에서의 큰-크기구조의 역할 (The role of large-scale structures in mixing layers)

  • 서태원
    • 대한기계학회논문집B
    • /
    • 제22권3호
    • /
    • pp.316-325
    • /
    • 1998
  • The objective of this study is to investigate the role of large-scale coherent structures in a spatially developing plane mixing layers. To achieve this, we have to look into the mutual interactions between three-dimensional large-scale coherent structures and the mean flow. Our attention will be focused on the energy exchange mechanism between the various modes, and the effects of the nonlinear evolution of the phases of the interacting modes. Linear stability of the three-dimensional viscous shear layer is formulated and solved as the basis for the solution of the nonlinear formulation based on the energy method. The importance of the initial conditions that may affect the evolution of the flow has been examined. It has been numerically calculated the nonlinear effects arising from the interactions among the three-dimensional large-scale coherent structures in a spatially developing plane mixing layers. The results of this study provide useful parametric information for the control of shear layer in practical applications in the mixing and transport augmentation.

배연탈질설비의 성능향상을 휘한 가스혼합에 관한 연구 (A Study on the Flue Gas Mixing for the Performance Improvement of De-NOx plant)

  • 류병남
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권4호
    • /
    • pp.462-472
    • /
    • 1999
  • De-NOx facility using Selective Catalytic Reduction method is the most widely applied one that removes NOx from flue gas emitted from combustion facility such as boiler for power generation engine incinerator etc. Reductant $NH_3\;or\;NH_4OH$ is sprayed into flue gas to convert NOx into $H_2O$ and $N_2.$ Good mixing between flue gas and $NH_3$ is the most important factor to increase reduction in catalytic layer and to reduce unreacted NH3 slip. Therefore the development of mixer device for mixing effect is one of the important part for SCR facility. Objectives of this study are to investigate the relation between flow and concentration field by observation at the wake of delta-wing type mixer. At the first stage qualitative measurement of flow field is conducted by flow visualization using laser light sheet in lab. scale wind tunnel. Also we have conducted the quantitative analysis by comparing flow field measurement using LDV with numerical simulation. On the basis of qualitative and quantitative analysis we investigate the dis-tribution of flow and concentration in flow model facility. The results of an experimental and compu-tational examination of the vortex structures shed from delta wing type vortex generator having $40^{\circ}$ angle of attack are presented, The effects of vortex structure on the gas mixing is discussed, too.

  • PDF

염색모발에서 퍼머시술시 퍼머 1제와 앰플의 혼합사용에 대한 효과 (A Study of Effects with Using After Mixing Ample and Permanent Solvent During Permanent Wave Operating, of Dyod Hairs)

  • 이은경;최정숙
    • 한국패션뷰티학회지
    • /
    • 제3권3호
    • /
    • pp.56-63
    • /
    • 2005
  • In the study of permanent waving method after mixing ample and permanent wave solvent in permanent wave the dyed humans hair are as follows; First, Permanent waving method after mixing ample and permanent wave solvent is that the better effective way in permanent wave the dyed humans hair because permanent waving cycle is constant and hair cuticle is glossy. Second, This study is not interpret in permanent wave dyed humans hair that tensile strength is effect of permanent waving method after mixing ample and permanent wave solvent. A extension degree is effect of permanent waving method after mixing ample and permanent wave solvent use indifferent ample treatment method. Third, Hair cuticle damages are a little permanent waving method after mixing ample and permanent wave solvent in permanent wave dyed humans hair.

  • PDF

임펠러 형상에 따른 교반기의 유동특성에 관한 연구 (A Study on the Flow Characteristics of Mixer by Impeller Types)

  • 양창조;최민선;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권7호
    • /
    • pp.899-905
    • /
    • 2003
  • Mixers are used in several industrial applications where it is necessary to strongly mix reactants in a short period of time (eg. reaction injection molding, ceramics manufacturing, crystallization). However, despite their widespread use, mixing flow characteristics in these systems have not been rigorously investigated. Influence of blade shapes on the mixing time and the power consumption per unit volume in two kinds of impeller including the mixing effects are studied by PIV experiment. A series of the experiments were carried out to achieve a better mixing effect in simple baffle arrangement and tall vessel with modified impellers(two kinds of blades : pitched blade turbine and rushton turbine). Results show that periodic vortex from the mixing layer is predominant and related unsteady flow characteristics prevail over the entire region.

원자로 부수로내 혼합날개를 지나는 삼차원 열유동 해석 (Numerical Analyses of Three-Dimensional Thermo-fluid flow through Mixing Vane in A Subchannel of Nuclear Reactor)

  • 최상철;김광용
    • 대한기계학회논문집B
    • /
    • 제27권3호
    • /
    • pp.311-318
    • /
    • 2003
  • The present work evaluates the effects of mixing vane shape on the flow structure and heat transfer downstream of mixing vane in a subchannel of fuel assembly. by obtaining velocity and pressure fields. turbulent intensity. flow-mixing factors. heat transfer coefficient and friction factor using three-dimensional RANS analysis. Four different shapes of mixing vane. which were designed by the authors were tested to evaluate the performances in enhancing the heat transfer. Standard k-$\varepsilon$ model is used as a turbulence closure model. and. periodic and symmetry conditions are set as boundary conditions. The flow blockage ratio is kept constant. but the twist angle of mixing vane is changed. The results with three turbulence models were compared with experimental data.

제트 유동장에서의 마일드 연소 및 오염물질 배출특성에 관한 전산해석 연구 (Computational Study of the MILD Combustion and Pollutant Emission Characteristics in Jet Flow Field)

  • 김유정;송금미;오창보
    • 한국연소학회지
    • /
    • 제17권4호
    • /
    • pp.60-65
    • /
    • 2012
  • The MILD combustion and pollutant emission characteristics were investigated computationally. The temperature of supplying air-stream and mixing rate (${\Omega}$) of exhaust gas in the air-stream were adjusted to investigate the effects of those parameters on the MILD combustion in jet flow field. The emission indices for NO (EINO) and CO (EICO) were introduced to quantify the amount of those species emitted from the combustion. The high-temperature region disappeared gradually as the mixing rate increased for fixed air-stream temperature. The EINO increased as the air-stream temperature became higher for fixed mixing rate, and the EINO decreased dramatically with increasing the mixing rate for each air-stream temperature condition. The EICO also decreased with increasing the mixing rate and it was nearly independent of air-stream temperature except for near ${\Omega}$ = 0.7. It was found that the CO supplied in the air-stream can be destroyed in the MILD combustion over the certain mixing rate.

Effect of Mixing Methods on the Biodegradation of Sorbed Naphthalene and Phenanthrene in Soils

  • Kim, Hae-Young;Moon, Deok Hyun;Chung, Seon-Yong;Park, Jeong-Hun
    • Environmental Engineering Research
    • /
    • 제15권2호
    • /
    • pp.57-62
    • /
    • 2010
  • The purpose of this study was to investigate the effect of mixing methods on the biodegradation of sorbed naphthalene and phenanthrene in soils. Biodegradation was initiated by inoculating Pseudomonas sp. KM1 into equilibrated soil slurry vials. Four different mixing methods, including no mixing, orbital shaking, rolling and rotating were utilized to enhance the biodegradation of both naphthalene and phenanthrene. The experimental results showed that the sorbed compounds were more effectively biodegraded with rolling and rotating mixing methods. The sorbed naphthalene concentrations were reduced to 0 mg/kg via the rolling and rotating methods. However, with no mixing and the orbital shaking methods, the sorbed naphthalene concentrations were comparatively high, ranging from 2.59 to 20.45 mg/kg. Similar trends were observed for the biodegradation of phenanthrene, but the concentrations remaining were higher than those of naphthalene, due to the limited bioavailability of the sorbed phenanthrene. The rolling and rotating mixing methods are suggested can distribute bacteria uniformly in the slurry system; improve the mass transfer rate and the probability of physical contact between bacteria and the sorbed contaminants, resulting in higher bioavailability of the contaminants.

연속회분식반응조 공정에서 교반/폭기비와 SRT가 영양염류제거에 미치는 영향 (Effects of mixing/aeration ratio and SRT on nutrient removal in SBR process)

  • 전석준;김한수
    • 한국물환경학회지
    • /
    • 제18권3호
    • /
    • pp.291-301
    • /
    • 2002
  • In this study, nutrients treatment by sequencing batch reactors(SBR) was performed. Nitrogen and phosphorus removal efficiencies were evaluated by changing SRT and mixing/aeration ratio. Not only nitrogen but also phosphorus removal patterns were investigated through track studies on 1 cycle. As SRT was fixed and mixing/aeration ratio was changed, maximum nitrogen removal efficiency was 87.6% at mixing/aeration ratio 0.67. Phosphorus removal efficiencies were more than 85.5% except no mixing condition. As mixing/aeration ratio was fixed and SRT was changed, nitrogen removal efficiencies were 70.5~79.8%, which represented slight changes, while phosphorus removal efficiencies were 49.0~97.3%, which represented sharply decreasing tendency at less than 20 day. Both phosphorus release rate k and maximum phosphorus release rate $P_{max}/M$ were are decreased as SRT was decreased, but they were not affected by mixing/aeration ratio. It was found that there is a linear relationship between ortho-phosphate uptake and maximum ortho-phosphate release.