• Title/Summary/Keyword: mixed-norm Hardy space

Search Result 1, Processing Time 0.014 seconds

FOURIER TRANSFORM OF ANISOTROPIC MIXED-NORM HARDY SPACES WITH APPLICATIONS TO HARDY-LITTLEWOOD INEQUALITIES

  • Liu, Jun;Lu, Yaqian;Zhang, Mingdong
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.5
    • /
    • pp.927-944
    • /
    • 2022
  • Let $\vec{p}{\in}(0,\;1]^n$ be an n-dimensional vector and A a dilation. Let $H^{\vec{p}}_A(\mathbb{R}^n)$ denote the anisotropic mixed-norm Hardy space defined via the radial maximal function. Using the known atomic characterization of $H^{\vec{p}}_A(\mathbb{R}^n)$ and establishing a uniform estimate for corresponding atoms, the authors prove that the Fourier transform of $f{\in}H^{\vec{p}}_A(\mathbb{R}^n)$ coincides with a continuous function F on ℝn in the sense of tempered distributions. Moreover, the function F can be controlled pointwisely by the product of the Hardy space norm of f and a step function with respect to the transpose matrix of A. As applications, the authors obtain a higher order of convergence for the function F at the origin, and an analogue of Hardy-Littlewood inequalities in the present setting of $H^{\vec{p}}_A(\mathbb{R}^n)$.