• Title/Summary/Keyword: mixed-hole transporting layer

Search Result 5, Processing Time 0.025 seconds

Improved Efficiency and Lifetime for Organic Light-emitting Devices based on Mixed-hole Transporting Layer (혼합된 정공 수송 층을 이용한 유기발광소자의 효율 및 수명 개선)

  • Seo, Jl-Hyun;Park, Jung-Hyun;Park, Il-Hong;Kim, Jun-Ho;Kim, Young-Kwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.3
    • /
    • pp.257-262
    • /
    • 2007
  • Organic light-emitting diodes (OLEDs) with the high efficieney and long lifetime are of growing interest in next-generation displays. Among the factors influencing OLEDs properties, one of unstable factor is $Alq_3$ cationic species caused by the excess holes resided in $Alq_3$ layer. Therefore, we suppressed the accumulation of excess holes by using the mixed-hole transporting layer (MHTL) of NPB and CBP in multilayer green OLEDs. The devices with MHTL showed improved characteristics in the luminous efficiency and lifetime. More characteristics and the carrier transport mechanism will be discussed.

Improved Efficiency and Lifetime for Organic Light-Emitting Devices Based on Mixed-Hole Transporting Layer (혼합된 정공 수송 층을 이용한 유기발광소자의 효율 및 수명 개선)

  • Seo, Ji-Hyun;Park, Jung-Hyun;Kim, Jun-Ho;Kim, Young-Kwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.67-68
    • /
    • 2006
  • Organic light-emitting devices (OLEDs) with the high efficiency and long lifetime are of growing interest in next-generation displays. Among the factors influencing OLEDs properties, one of unstable factor is $Alq_3$ cationic species caused by the excess holes resided in $Alq_3$ layer. Therefore, we suppressed the accumulation of excess holes by using the mixed-hole transporting layer (MHTL) of NPB and CBP in multilayer green OLEDs. The devices with MHTL showed improved characteristics in the luminance efficiency and lifetime. More characteristics and the carrier transport mechanism will be discussed.

  • PDF

Depositon of NiO films for Inorganic Hole-transporting Layer in QD-LED (QD-LED용 무기계 홀전도층 NiO 박막 증착 연구)

  • Chung, Kook-Chae;Oh, Seung-Kun;Kim, Young-Kuk;Choi, Chul-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.330-330
    • /
    • 2009
  • For the high-performance Quantum dots-Light Emitting Diodes in the near-infrared and visible spectrum, adequate electro- and hole-transporting layers are required. The operation lifetimes of typical materials used in OLEDs are very limited and degraded especially by the oxygen and humid atmosphere. In this work, NiO was selected as a possible hole-transporting layer replacing the TPD film used in QD-LEDs. About 40-nm-thick NiO films have been deposited by the rf-sputtering method on various technical substrates such as FTO/glass, ITO/glass, and ITO/PEN. For the balance of charge carriers and quenching consideration, the resistivity of the deposited NiO films was investigated controlling the oxygen in the sputtering gas. NiO films were fabricated at room temperature and about 6mTorr using pure Ar, 2.5%-, 5%-, and 10%-mixed $O_2$ in Ar respectively. We also investigated the rf-power dependence on NiO films in the range of 80 ~ 200 Watts. The resistivity of the samples was varied from highly conductive to resistive state. Also discussed are the surface roughness of NiO films to provide the smooth surface for the deposition of QDs.

  • PDF

High Efficiency Red PHOLEDs with Organic Single Layer Structure

  • Jeon, Woo-Sik;Park, Tae-Jin;Yu, Jae-Hyung;Pode, Ramchandra;Jang, Jin;Kwon, Jang-Hyuk
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.42-45
    • /
    • 2009
  • We report simple structure red phosphorescent devices comprising only single organic layer structure. Maximum current efficiency of 9.44 cd/A and the driving voltage of 5.4 V are obtained in this single layer structure PHOLEDs, respectively. The mixed host system using electron transporting and hole transporting materials doped with $Ir(piq)_3$ provides such high efficiency and reasonable driving voltage. The principal to simplification is the direct charges injection from the metallic electrodes into mixed host materials.

  • PDF

Organic Solar Cells with CuO Nanoparticles Mixed PEDOT:PSS Buffer Layer (산화구리 나노입자를 혼합한 PEDOT:PSS 박막을 이용한 유기 태양전지)

  • Oh, Sang Hoon;Heo, Seung Jin;Kim, Hyun Jae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.2
    • /
    • pp.121-125
    • /
    • 2014
  • In this research, nanocomposite layers consisting of poly (3,4,-ethylene dioxythiophene):polystyrene sulfonic acid (PEDOT:PSS) and CuO nanoparticles were investigated as hole transport layers in organic solar cells based on poly (3-hexylthiophene) (P3HT) as the electron donor and (6.6) phenyl-C61-butyric acid methyl ester (PCBM) as the electron acceptor. The addition of CuO nanoparticles to PEDOT:PSS layer improved the solar cell performance with 0.5% CuO nanoparticle concentration. At optimized concentration, CuO mixed PEDOT:PSS films had good electrical ($4.131{\Omega}{\cdot}cm$) and optical (transmittance > 90%) properties for using hole transporting layer. We investigated that improved solar cell performance with CuO nanoparticles mixed PEDOT:PSS films.